Ice damage impacts on the health of the northern New York State forest

2001 ◽  
Vol 77 (4) ◽  
pp. 619-625 ◽  
Author(s):  
Paul D. Manion ◽  
David H. Griffin ◽  
Benjamin D. Rubin

Detailed crown condition information, including numbers of broken branches ≥ 5 cm diameter, broken tops, and healthy branches, were recorded for 5434 living trees > 9 cm dbh from 603 ten-basal-area-factor prism plots (three per forest stand) at 201 random points (stands) throughout the ice damage region of northern New York State. Twenty five percent of the sample stands had ≥ 20% branch breakage. Bigtooth aspen, red oak, red maple, and white pine had the most breakage. Comparison of potential mortality of trees associated with ≥ 75% ice damage (severe damage) to baseline (predicted) mortality to maintain the existing forest structure suggests that ice damage may alter the health of 18% of the forest stands but this is not sufficient to alter the health (sustainability) of the larger forest system. Key words: ice storm, forest health, sustainability, growth, mortality, dbh classes

1985 ◽  
Vol 15 (5) ◽  
pp. 881-889 ◽  
Author(s):  
Christopher S. Cronan ◽  
Marc R. DesMeules

The Integrated Lake–Watershed Acidification Study (ILWAS) was conducted using three forested watersheds (Panther, Sagamore, and Woods) in the central Adirondack Park of New York State. By comparing the biogeochemical behavior of these watersheds, the ILWAS investigators hoped to elucidate the major ecosystem parameters controlling the fate of strong acids introduced from the atmosphere to lake–watershed systems. The ILWAS vegetation research program was designed to compare the quantitative patterns of forest structure in these midelevation watersheds. Results showed that the ILWAS catchments contain closely related variants of the northern hardwood – spruce – fir complex of the Adirondack region. The dominant tree species in these watersheds are beech (Fagusgrandifolia Ehrh.), red spruce (Picearubens Sarg.), sugar maple (Acersaccharum Marsh.), red maple (Acerrubrum L.), and yellow birch (Betulaalleghaniensis Britt.). On an areal basis, the watersheds contain 57–88% hardwood cover type and 5–29% spruce–fir cover type. Mean live basal area values range from 22 to 30 m2 ha−1 between catchments, while standing dead basal area values range from 4 to 8 m2 ha−1. Mean live stem densities range from 1400 to 1700 stems ha−1. Mean aboveground biomass projections for the tree stratum in the three watersheds range from 143 to 199 Mt ha−1, while estimated aboveground annual biomass increments range from 4.1 to 5.3% of standing biomass.


Author(s):  
Junhong Wang ◽  
Jerry Brotzge ◽  
Jacob Shultis ◽  
Nathan Bain

AbstractThe accurate detection and monitoring of freezing rain and icing conditions at the surface is a notoriously challenging but important problem. This work attempts to enhance icing detection and characterization utilizing data from the New York State Mesonet (NYSM). NYSM is the first operational network measuring winds at 10 meters from two independent sensors: propeller and sonic anemometers. During and after freezing rain events, large wind speed differences are frequently reported between the two anemometers because the propeller develops a coating of ice, thus either stopping or slowing its rotation. Such errors of propeller data provide a signal for identifying icing conditions. An automated method for identifying “active freezing rain” (AFR) and a continuation of “frozen surface” (FS) conditions is developed. Hourly maps of AFR and FS sites are generated using four criteria: (1) a wind speed difference (sonic – propeller) of > 1 m s-1 or 0 m s-1 propeller wind speed for at least half hour, (2) a temperature threshold of -5°C to 2°C for AFR and less than 2°C for FS, (3) insignificant hourly snow accumulation, and (4) with (or without) significant hourly precipitation accumulation for AFR (or FS). The AFR events detected by the automated method for last four winters (2017-2021) show very good agreements in starting and ending times with that from ASOS data. A case study of the ice storm during 14-16 April 2018 further demonstrates the validity of the methodology and highlights the benefit of NYSM profiler and camera data.


2005 ◽  
Vol 81 (4) ◽  
pp. 502-515 ◽  
Author(s):  
Thad E Yorks ◽  
Kenneth B Adams

In January 1998, an ice storm caused severe damage to the rare jack pine – pitch pine barrens in northeastern New York. We quantified tree damage and recovery in seven barrens stands and an adjacent red pine stand. Ice storm damage was variable among stands with 44% to 94% of trees exhibiting damage. Live tree basal area (BA) was reduced by 9% to 45% in six of the eight stands, and dead tree BA increased in all stands. In mixed jack pine – pitch pine stands, the percent of jack pines dead after the ice storm (71% to 91%) was much higher than red maple (0% to 7%) or pitch pine (17% to 25%).Mortality of pitch pine was very low due largely to its ability to produce epicormic growth. Red pine exhibited more severe damage than eastern white pine. Because pine regeneration remains absent or sparse in the barrens stands, deciduous trees and ericaceous shrubs may eventually replace pine species. Mortality due to ice damage may exacerbate this problem in the absence of some regenerating disturbance, such as fire or harvesting. Key words: ice storm damage, pine barrens, Pinus banksiana, jack pine, Pinus rigida, pitch pine, Pinus resinosa, red pine, Pinus strobus, eastern white pine, Acer rubrum, red maple


1990 ◽  
Vol 83 (6) ◽  
pp. 2349-2351
Author(s):  
Michael A. Valenti ◽  
Lawrence P. Abrahamson ◽  
Charles A. Maynard

Author(s):  
Marvin S. Swartz ◽  
Jeffrey W. Swanson ◽  
Henry J. Steadman ◽  
Pamela Clark Robbins ◽  
John Monahan

Sign in / Sign up

Export Citation Format

Share Document