scholarly journals Some Observations on Triplet Ground-States in the Context of ‘Topological’ (HLPM) Ring-Currents in Conjugated Systems

2019 ◽  
Vol 92 (4) ◽  
pp. 445-455
Author(s):  
Timothy K. Dickens ◽  
Roger B. Mallion

When the quasi graph-theoretical Hückel–London–Pople–McWeeny (HLPM) approach is used to calculate ‘topological’ π-electron ring-currents and bond-currents in conjugated hydrocarbons, a problem is identified that occurs whenever application of the Aufbau process gives rise to a π-electronic ground-state configuration that is a triplet. This circumstance seems to occur only occasionally and, even when it does, the generally somewhat outré molecular graphs in question appear unlikely to represent extant or viable conjugated systems. The molecular graphs of four examples are used to illustrate this ‘triplet ground-state problem’, only one of which represents a hydrocarbon that has actually been synthesised. It is pointed out that the ‘triplet ground-state problem’ does constitute an intrinsic limitation of the HLPM approach. It is, though, a limitation that is also necessarily inherent in other equivalent (though ostensibly different) methods of calculating magnetic properties due to π-electron ring-currents — methods that are likewise founded on the Hückel molecular-orbital conventions. When a triplet ground-state arises, topological ring-currents and bond-currents cannot be calculated by the HLPM method and its equivalents. Infinite paramagnetism is formally to be predicted in such situations.

2015 ◽  
Vol 51 (10) ◽  
pp. 1819-1822 ◽  
Author(s):  
T. K. Dickens ◽  
R. B. Mallion

π-Electron ring-currents for the altans of the four regular [r,s]-coronenes are calculated by the topological HLPM approach.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Simeon Hellerman ◽  
Nozomu Kobayashi ◽  
Shunsuke Maeda ◽  
Masataka Watanabe

Abstract As a sequel to previous work, we extend the study of the ground state configuration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1/ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ1/ρ2 ≪ 1. We also compute, at fixed set of charges, ρ1, ρ2, the ground state energy and the two-point function(s) associated with this inhomogeneous configuration on the torus. The ground state energy was found to scale (ρ1 + ρ2)3/2, as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge.


1974 ◽  
Vol 5 (33) ◽  
pp. no-no
Author(s):  
DAVID R. YARKONY ◽  
HENRY F. III SCHAEFER

Sign in / Sign up

Export Citation Format

Share Document