scholarly journals Evaluation of the clinical efficacy of a TW3-based fully automated bone age assessment system using deep neural networks

2020 ◽  
Vol 50 (3) ◽  
pp. 237
Author(s):  
Nan-Young Shin ◽  
Byoung-Dai Lee ◽  
Ju-Hee Kang ◽  
Hye-Rin Kim ◽  
Dong Hyo Oh ◽  
...  
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 33346-33358 ◽  
Author(s):  
Sung Joon Son ◽  
Youngmin Song ◽  
Namgi Kim ◽  
Younghae Do ◽  
Nojun Kwak ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 765
Author(s):  
Mohd Asyraf Zulkifley ◽  
Nur Ayuni Mohamed ◽  
Siti Raihanah Abdani ◽  
Nor Azwan Mohamed Kamari ◽  
Asraf Mohamed Moubark ◽  
...  

Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich–Pyle (GP) or Tanner–Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chen Zhao ◽  
Jungang Han ◽  
Yang Jia ◽  
Lianghui Fan ◽  
Fan Gou

Deep learning technique has made a tremendous impact on medical image processing and analysis. Typically, the procedure of medical image processing and analysis via deep learning technique includes image segmentation, image enhancement, and classification or regression. A challenge for supervised deep learning frequently mentioned is the lack of annotated training data. In this paper, we aim to address the problems of training transferred deep neural networks with limited amount of annotated data. We proposed a versatile framework for medical image processing and analysis via deep active learning technique. The framework includes (1) applying deep active learning approach to segment specific regions of interest (RoIs) from raw medical image by using annotated data as few as possible; (2) generative adversarial Network is employed to enhance contrast, sharpness, and brightness of segmented RoIs; (3) Paced Transfer Learning (PTL) strategy which means fine-tuning layers in deep neural networks from top to bottom step by step to perform medical image classification or regression tasks. In addition, in order to understand the necessity of deep-learning-based medical image processing tasks and provide clues for clinical usage, class active map (CAM) is employed in our framework to visualize the feature maps. To illustrate the effectiveness of the proposed framework, we apply our framework to the bone age assessment (BAA) task using RSNA dataset and achieve the state-of-the-art performance. Experimental results indicate that the proposed framework can be effectively applied to medical image analysis task.


2020 ◽  
Vol 10 (3) ◽  
pp. 657-667
Author(s):  
Xue-Lian Zhou ◽  
Er-Gang Wang ◽  
Qiang Lin ◽  
Guan-Ping Dong ◽  
Wei Wu ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 1-6
Author(s):  
Chadaporn Keatmanee ◽  
Songphon Klabwong ◽  
Kamolphong Osatavanichvong ◽  
Chirotchana Suchato

Sign in / Sign up

Export Citation Format

Share Document