Regularized projection score estimation of treatment effects in high-dimensional quantile regression

2021 ◽  
Author(s):  
Chao Cheng ◽  
Xingdong Feng ◽  
Jian Huang ◽  
Xu Liu
2021 ◽  
Author(s):  
Nicolai T. Borgen ◽  
Andreas Haupt ◽  
Øyvind N. Wiborg

Using quantile regression models to estimate quantile treatment effects is becoming increasingly popular. This paper introduces the rqr command that can be used to estimate residualized quantile regression (RQR) coefficients and the rqrplot postestimation command that can be used to effortless plot the coefficients. The main advantages of the rqr command compared to other Stata commands that estimate (unconditional) quantile treatment effects are that it can include high-dimensional fixed effects and that it is considerably faster than the other commands.


2021 ◽  
Author(s):  
Nicolai T. Borgen ◽  
Andreas Haupt ◽  
Øyvind N. Wiborg

The identification of unconditional quantile treatment effects (QTE) has become increasingly popular within social sciences. However, current methods to identify unconditional QTEs of continuous treatment variables are incomplete. Contrary to popular belief, the unconditional quantile regression model introduced by Firpo, Fortin, and Lemieux (2009) does not identify QTE, while the propensity score framework of Firpo (2007) allows for only a binary treatment variable, and the generalized quantile regression model of Powell (2020) is unfeasible with high-dimensional fixed effects. This paper introduces a two-step approach to estimate unconditional QTEs where the treatment variable is first regressed on the control variables followed by a quantile regression of the outcome on the residualized treatment variable. Unlike much of the literature on quantile regression, this two-step residualized quantile regression framework is easy to understand, computationally fast, and can include high-dimensional fixed effects.


Biometrika ◽  
2020 ◽  
Author(s):  
Oliver Dukes ◽  
Stijn Vansteelandt

Summary Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators, such as the lasso, or other regularization approaches. Naïve use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with the sample size, correctly specifying a model for the outcome is nontrivial. In this article we deal with both of these concerns simultaneously, obtaining confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.


Author(s):  
Alexandre Belloni ◽  
Victor Chernozhukov ◽  
Christian Hansen

Author(s):  
Nguyen Thanh Tung ◽  
Joshua Zhexue Huang ◽  
Imran Khan ◽  
Mark Junjie Li ◽  
Graham Williams

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 153205-153216
Author(s):  
Dost Muhammad Khan ◽  
Anum Yaqoob ◽  
Nadeem Iqbal ◽  
Abdul Wahid ◽  
Umair Khalil ◽  
...  

2011 ◽  
Vol 173 (12) ◽  
pp. 1404-1413 ◽  
Author(s):  
Jeremy A. Rassen ◽  
Robert J. Glynn ◽  
M. Alan Brookhart ◽  
Sebastian Schneeweiss

Sign in / Sign up

Export Citation Format

Share Document