scholarly journals A New Framework for Estimation of Unconditional Quantile Treatment Effects: The Residualized Quantile Regression (RQR) Model

2021 ◽  
Author(s):  
Nicolai T. Borgen ◽  
Andreas Haupt ◽  
Øyvind N. Wiborg

The identification of unconditional quantile treatment effects (QTE) has become increasingly popular within social sciences. However, current methods to identify unconditional QTEs of continuous treatment variables are incomplete. Contrary to popular belief, the unconditional quantile regression model introduced by Firpo, Fortin, and Lemieux (2009) does not identify QTE, while the propensity score framework of Firpo (2007) allows for only a binary treatment variable, and the generalized quantile regression model of Powell (2020) is unfeasible with high-dimensional fixed effects. This paper introduces a two-step approach to estimate unconditional QTEs where the treatment variable is first regressed on the control variables followed by a quantile regression of the outcome on the residualized treatment variable. Unlike much of the literature on quantile regression, this two-step residualized quantile regression framework is easy to understand, computationally fast, and can include high-dimensional fixed effects.

2021 ◽  
Author(s):  
Nicolai T. Borgen ◽  
Andreas Haupt ◽  
Øyvind N. Wiborg

Using quantile regression models to estimate quantile treatment effects is becoming increasingly popular. This paper introduces the rqr command that can be used to estimate residualized quantile regression (RQR) coefficients and the rqrplot postestimation command that can be used to effortless plot the coefficients. The main advantages of the rqr command compared to other Stata commands that estimate (unconditional) quantile treatment effects are that it can include high-dimensional fixed effects and that it is considerably faster than the other commands.


Author(s):  
Rong Zhu ◽  
Linfeng Chen

Abstract This paper estimates the effects of overeducation and overskilling on mental well-being in Australia. Using fixed-effects (FE) panel estimations, our analysis shows that overeducation does not significantly affect people’s mental well-being. However, overskilling has strong detrimental consequences for mental well-being. Using a panel data quantile regression model with FE, we show that the negative effects of overskilling are highly heterogeneous, with larger impact at the lower end of the distribution of mental well-being. Furthermore, our dynamic analysis shows that the damaging effects of overskilling are transitory, and we find evidence of complete mental well-being adaptation one year after becoming overskilled.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 97-107 ◽  
Author(s):  
Bahadır Yuzbasi ◽  
Yasin Asar ◽  
Samil Sik ◽  
Ahmet Demiralp

An important issue is that the respiratory mortality may be a result of air pollution which can be measured by the following variables: temperature, relative humidity, carbon monoxide, sulfur dioxide, nitrogen dioxide, hydrocarbons, ozone, and particulates. The usual way is to fit a model using the ordinary least squares regression, which has some assumptions, also known as Gauss-Markov assumptions, on the error term showing white noise process of the regression model. However, in many applications, especially for this example, these assumptions are not satisfied. Therefore, in this study, a quantile regression approach is used to model the respiratory mortality using the mentioned explanatory variables. Moreover, improved estimation techniques such as preliminary testing and shrinkage strategies are also obtained when the errors are autoregressive. A Monte Carlo simulation experiment, including the quantile penalty estimators such as lasso, ridge, and elastic net, is designed to evaluate the performances of the proposed techniques. Finally, the theoretical risks of the listed estimators are given.


Sign in / Sign up

Export Citation Format

Share Document