scholarly journals Estimation of treatment effects with high-dimensional controls

Author(s):  
Alexandre Belloni ◽  
Victor Chernozhukov ◽  
Christian Hansen
Biometrika ◽  
2020 ◽  
Author(s):  
Oliver Dukes ◽  
Stijn Vansteelandt

Summary Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators, such as the lasso, or other regularization approaches. Naïve use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with the sample size, correctly specifying a model for the outcome is nontrivial. In this article we deal with both of these concerns simultaneously, obtaining confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.


2011 ◽  
Vol 173 (12) ◽  
pp. 1404-1413 ◽  
Author(s):  
Jeremy A. Rassen ◽  
Robert J. Glynn ◽  
M. Alan Brookhart ◽  
Sebastian Schneeweiss

2013 ◽  
Vol 81 (2) ◽  
pp. 608-650 ◽  
Author(s):  
A. Belloni ◽  
V. Chernozhukov ◽  
C. Hansen

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 389
Author(s):  
Sonali Parbhoo ◽  
Mario Wieser ◽  
Aleksander Wieczorek ◽  
Volker Roth

Estimating the effects of an intervention from high-dimensional observational data is a challenging problem due to the existence of confounding. The task is often further complicated in healthcare applications where a set of observations may be entirely missing for certain patients at test time, thereby prohibiting accurate inference. In this paper, we address this issue using an approach based on the information bottleneck to reason about the effects of interventions. To this end, we first train an information bottleneck to perform a low-dimensional compression of covariates by explicitly considering the relevance of information for treatment effects. As a second step, we subsequently use the compressed covariates to perform a transfer of relevant information to cases where data are missing during testing. In doing so, we can reliably and accurately estimate treatment effects even in the absence of a full set of covariate information at test time. Our results on two causal inference benchmarks and a real application for treating sepsis show that our method achieves state-of-the-art performance, without compromising interpretability.


2012 ◽  
Author(s):  
Alexandre Belloni ◽  
Victor Chernozhukov ◽  
Christian Hansen

2017 ◽  
Vol 107 (5) ◽  
pp. 270-273 ◽  
Author(s):  
Ye Luo ◽  
Martin Spindler

We present the L2Boosting algorithm and two variants, namely post-Boosting and orthogonal Boosting. Building on results in Ye and Spindler (2016), we demonstrate how boosting can be used for estimation and inference of low-dimensional treatment effects. In particular, we consider estimation of a treatment effect in a setting with very many controls and in a setting with very many instruments. We provide simulations and analyze two real applications. We compare the results with Lasso and find that boosting performs quite well. This encourages further use of boosting for estimation of treatment effects in high-dimensional settings.


2021 ◽  
Author(s):  
Nicolai T. Borgen ◽  
Andreas Haupt ◽  
Øyvind N. Wiborg

Using quantile regression models to estimate quantile treatment effects is becoming increasingly popular. This paper introduces the rqr command that can be used to estimate residualized quantile regression (RQR) coefficients and the rqrplot postestimation command that can be used to effortless plot the coefficients. The main advantages of the rqr command compared to other Stata commands that estimate (unconditional) quantile treatment effects are that it can include high-dimensional fixed effects and that it is considerably faster than the other commands.


Sign in / Sign up

Export Citation Format

Share Document