scholarly journals Detection and Classification of Baseline-Wander Noise in ECG Signals Using Discrete Wavelet Transform and Decision Tree Classifier

2019 ◽  
Vol 25 (4) ◽  
pp. 47-57
Author(s):  
Syed Irtaza Haider ◽  
Musaed Alhussein

An electrocardiogram (ECG) signal is usually contaminated with various noises, such as baseline-wander, power-line interference, and electromyogram (EMG) noise. Denoising must be performed to extract meaningful information from ECG signals for clinical detection of heart diseases. This work is focused on baseline-wander noise as it shares the same frequency spectrum as the ST segment of ECG signals. Hence, it is important to estimate the baseline-wander prior to its removal from ECG signals. This paper presents a method for classifying each segment of the ECG signal’s baseline-wander as minimal, moderate or large. We use the C4.5 decision tree algorithm to model the classifier using the WEKA data-mining tool. We test the proposed method on ECG signals obtained from the MIT-BIH arrhythmia database (48 ECG recordings, each slightly longer than 30 min). We use 36 ECG recordings for training the classifier with the remaining 12 ECG recordings as the test data for classification. We partition each recording into 5 second, non-overlapping segments, which result in 361 segments for each record. The classification results show that the model classifier achieves an average sensitivity of 97.36 %, specificity of 99.50 %, and overall accuracy of 98.89 % in classifying the baseline-wander noise in ECG signals. The proposed method effectively addresses the question of identifying the minimal baseline-wander segments. Moreover, the proposed framework may help in devising an algorithm for the selective filtering of moderate and large baseline-wander segments to achieve the best trade-off between accuracy and computational cost.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Majid Nour ◽  
Kemal Polat

Hypertension (high blood pressure) is an important disease seen among the public, and early detection of hypertension is significant for early treatment. Hypertension is depicted as systolic blood pressure higher than 140 mmHg or diastolic blood pressure higher than 90 mmHg. In this paper, in order to detect the hypertension types based on the personal information and features, four machine learning (ML) methods including C4.5 decision tree classifier (DTC), random forest, linear discriminant analysis (LDA), and linear support vector machine (LSVM) have been used and then compared with each other. In the literature, we have first carried out the classification of hypertension types using classification algorithms based on personal data. To further explain the variability of the classifier type, four different classifier algorithms were selected for solving this problem. In the hypertension dataset, there are eight features including sex, age, height (cm), weight (kg), systolic blood pressure (mmHg), diastolic blood pressure (mmHg), heart rate (bpm), and BMI (kg/m2) to explain the hypertension status and then there are four classes comprising the normal (healthy), prehypertension, stage-1 hypertension, and stage-2 hypertension. In the classification of the hypertension dataset, the obtained classification accuracies are 99.5%, 99.5%, 96.3%, and 92.7% using the C4.5 decision tree classifier, random forest, LDA, and LSVM. The obtained results have shown that ML methods could be confidently used in the automatic determination of the hypertension types.


Sign in / Sign up

Export Citation Format

Share Document