scholarly journals Single and Two-Phase Heat Transfer Enhancement Using Longitudinal Vortex Generator in Narrow Rectangular Channel

Author(s):  
Yan-Ping Huang ◽  
Jun Huang ◽  
Jian Ma ◽  
Yan-Lin Wang ◽  
Jun-Feng Wang ◽  
...  
Author(s):  
Zheng Li ◽  
Zhaoqing Ke ◽  
Kuojiang Li ◽  
Xianchen Xu ◽  
Yangyang Chen ◽  
...  

In this article, longitudinal vortex generator (LVG) for heat transfer enhancement in rectangular channel is investigated numerically and experimentally. Two symmetrical delta shaped plates are placed vertically at the bottom of a rectangular channel and a pair of longitudinal vortices are generated and transferred downstream. These vortices were clockwise and counterclockwise, respectively. Correspondingly, the flow has the tendency to shoot to the surface opposite to the one with the LVG, then it separates into two steams and runs back to the LVG surface. Local heat transfer enhancement in the rectangular channel varies due to this fountain effect. Size effects were discussed for two types of LVG. With the same height, the wider LVG has better thermal performance within the rectangular geometry limit. One specific LVG was fabricated and tested experimentally and results show significant heat transfer enhancement. It indicated that the LVG can enhance the heat transfer significantly and the numerical results are reliable.


Equipment ◽  
2006 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
A. Zhuravlyov ◽  
A. Shapovalov ◽  
L. L. Vasiliev, Jr

Author(s):  
Sujoy Kumar Saha ◽  
Hrishiraj Ranjan ◽  
Madhu Sruthi Emani ◽  
Anand Kumar Bharti

Author(s):  
Jiansheng Wang ◽  
Zhiqin Yang

The heat transfer characteristic and flow structure of fluid in the rectangular channel with different height vortex generators in small scale are investigated with numerical simulation. Meantime, the properties of heat transfer and flow of fluid in the rectangular channel are compared with the channel which located small scale vortex generator. The variation law of local heat transfer and flow structure in channel is obtained. The mechanism of heat transfer enhancement of small scale vortex generators is discussed in detail. It is found that the influence of vortex generator on heat transfer is not in proportion to the size of vortex generator. What is more, turbulent flow structure near the wall, which influences the temperature distribution near the wall, induces the variety of local heat transfer. The fluid movement towards to the wall causes the heat transfer enhanced. On the contrary, the fluid movement away from the wall decreases the local heat transfer.


Sign in / Sign up

Export Citation Format

Share Document