scholarly journals Gas Tungsten Arc Welding with Synchronized Magnetic Oscillation

10.5772/64158 ◽  
2016 ◽  
Author(s):  
Thiago Resende Larquer ◽  
Ruham Pablo Reis
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5799
Author(s):  
Xiaoxia Jian ◽  
Xing Yang ◽  
Jingqian Li ◽  
Weihua Wang ◽  
Hebao Wu

Magnetic oscillation arc (MOA) technology was developed to avoid insufficient fusion defects appearing at the sidewalls in narrow gap gas tungsten arc welding (NG-GTAW). In this work, a unified model was developed to simulate the process of MOA assisted NG-GTAW. The model included the MOA, welding pool, workpiece and the coupling interaction between them. The heating characteristic of the MOA and the flow of liquid metal were simulated, and the mechanism of forming a uniform welding bead under MOA was investigated. It was found that if the magnetic flux density increased to 9 mT, the MOA could point to the sidewall directly; the maximum heat flux at the bottom declined by almost half and at the side, it increased by more than ten times. Additionally, the heat flux was no longer concentrated but dispersed along the narrow groove face. Under the effect of MOA, there were mainly two flow vortexes in the molten pool, which could further increase the heat distribution between the bottom, sidewall and corner, and was beneficial for the formation of a good-shape weld. The model was validated by experimental data.


2020 ◽  
Vol 26 (4) ◽  
pp. 426-431
Author(s):  
Wei LI ◽  
Gaochong LV ◽  
Qiang WANG ◽  
Songtao HUANG

To resolve the problem of grain coarsening occurring in the fusion zone and the heat-affected zone during conventional gas tungsten arc welding(C-GTAW) welded titanium alloy, which severely restricts the improvement of weld mechanical properties, welding experiments on Ti-6Al-4V titanium alloy by adopting ultra-high frequency pulse gas tungsten arc welding (UHFP-GTAW) technique were carried out to study arc characteristics and weld bead microstructure. Combined with image processing technique, arc shapes during welding process were observed by high-speed camera. Meanwhile the average arc pressure under various welding parameters were obtained by adopting pressure measuring equipment with high-precision. In addition, the metallographic samples of the weld cross section were prepared for observing weld bead geometry and microstructure of the fusion zone. The experimental results show that, compared with C-GTAW, UHFP-GTAW process provides larger arc energy density and higher proportion of arc core region to the whole arc area. Moreover, UHFP-GTAW process has the obviously effect on grain refinement, which can decrease the grain size of the fusion zone. The results also revealed that a significant increase of arc pressure while increasing pulse frequency of UHFP-GTAW, which could improve the depth-to-width ratio of weld beads.


Author(s):  
Junting Xiang ◽  
Keigo Tanaka ◽  
Fiona F. Chen ◽  
Masaya Shigeta ◽  
Manabu Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document