scholarly journals Drosophila Imaginal Discs as a Playground for Genetic Analysis: Concepts, Techniques and Expectations for Biomedical Research

Author(s):  
Cristina M. Ostalé ◽  
Ana Ruiz-Gómez ◽  
Patricia Vega ◽  
Mireya Ruiz-Losada ◽  
Carlos Estella ◽  
...  
Genetics ◽  
1999 ◽  
Vol 152 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Kristi A Wharton ◽  
James M Cook ◽  
Sonia Torres-Schumann ◽  
Katherine de Castro ◽  
Emily Borod ◽  
...  

Abstract We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-β signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1271-1286 ◽  
Author(s):  
Pascal Heitzler ◽  
Marc Haenlin ◽  
Philippe Ramain ◽  
Manuel Calleja ◽  
Pat Simpson

Abstract A genetic and phenotypic analysis of the gene pannier is described. Animals mutant for strong alleles die as embryos in which the cells of the amnioserosa are prematurely lost. This leads to a dorsal cuticular hole. The dorsal-most cells of the imagos are also affected: viable mutants exhibit a cleft along the dorsal midline. pannier mRNA accumulates specifically in the dorsal-most regions of the embryo and the imaginal discs. Viable mutants and mutant combinations also affect the thoracic and head bristle patterns in a complex fashion. Only those bristles within the area of expression of pannier are affected. A large number of alleles have been studied and reveal that pannier may have opposing effects on the expression of achaete and scute leading to a loss or a gain of bristles.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
R. W. Cole ◽  
J. C. Kim

In recent years, non-human primates have become indispensable as experimental animals in many fields of biomedical research. Pharmaceutical and related industries alone use about 2000,000 primates a year. Respiratory mite infestations in lungs of old world monkeys are of particular concern because the resulting tissue damage can directly effect experimental results, especially in those studies involving the cardiopulmonary system. There has been increasing documentation of primate parasitology in the past twenty years.


1997 ◽  
Vol 61 (6) ◽  
pp. 491-496 ◽  
Author(s):  
K. HIDAKA ◽  
I. IUCHI ◽  
M. TOMITA ◽  
Y. WATANABE ◽  
Y. MINATOGAWA ◽  
...  

Pathology ◽  
2003 ◽  
Vol 35 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Hiroya Kato ◽  
Sukenari Koyabu ◽  
Shigenori Aoki ◽  
Takuya Tamai ◽  
Masahiro Sugawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document