imaginal discs
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 28)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Vol 118 (45) ◽  
pp. e2110062118
Author(s):  
Izarne Medina ◽  
Manuel Calleja ◽  
Ginés Morata

Cell competition is a homeostatic process that eliminates by apoptosis unfit or undesirable cells from animal tissues, including tumor cells that appear during the life of the organism. In Drosophila there is evidence that many types of oncogenic cells are eliminated by cell competition. One exception is cells mutant for polyhomeotic (ph), a member of the Polycomb family of genes; most of the isolated mutant ph clones survive and develop tumorous overgrowths in imaginal discs. To characterize the tumorigenic effect of the lack of ph, we first studied the growth of different regions of the wing disc deficient in ph activity and found that the effect is restricted to the proximal appendage. Moreover, we found that ph-deficient tissue is partially refractory to apoptosis. Second, we analyzed the behavior of clones lacking ph function and found that many suffer cell competition but are not completely eliminated. Unexpectedly, we found that nonmutant cells also undergo cell competition when surrounded by ph-deficient cells, indicating that within the same tissue cell competition may operate in opposite directions. We suggest two reasons for the incompleteness of cell competition in ph mutant cells: 1) These cells are partially refractory to apoptosis, and 2) the loss of ph function alters the identity of imaginal cells and subsequently their cell affinities. It compromises the winner/loser interaction, a prerequisite for cell competition.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michelle Prioli Miranda Soares ◽  
Daniel Guariz Pinheiro ◽  
Flávia Cristina de Paula Freitas ◽  
Zilá Luz Paulino Simões ◽  
Márcia Maria Gentile Bitondi

Abstract Background Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. Results We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. Conclusion Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.


2021 ◽  
Author(s):  
Ke Yang ◽  
Min Liu ◽  
Zhi Feng ◽  
Marta Rojas ◽  
Lingjian Zhou ◽  
...  

AbstractSecretory cargos are collected at ER exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we used transgenic tagging in Drosophila flies, 3D-SIM and FIB-SEM to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs and imaginal discs overexpressing ERES determinant Tango1. We found in front of ERES a pre-cis-Golgi region involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate intermediate compartment or collection of large carriers, for which we found no evidence. We found, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.


2021 ◽  
Author(s):  
Sophie Koch ◽  
Rui Tahara ◽  
Angelly Vasquez-Correa ◽  
Ehab Abouheif

AbstractThe growth of imaginal discs in holometabolous insects is coordinated with larval growth to ensure the symmetrical and proportional development of the adult appendages. In ants, the differential growth of these discs generates distinct castes – the winged male and queen castes and the wingless worker caste. In the hyperdiverse ant genusPheidole, the worker caste is composed of two morphologically distinct subcastes: small minor workers and larger, big-headed soldiers. Although these worker subcastes are completely wingless, soldier larvae develop rudimentary forewing discs that are necessary for generating the disproportionate head-to-body scaling of the big-headed soldier subcaste. However, it remains unclear whether rudimentary forewing discs in soldier larvae are coordinated with other imaginal discs, and whether disc growth and coordination patterns vary between the minor worker and soldier subcastes. Here we show, using quantitative nano-CT three-dimensional analyses, that growth of the soldier rudimentary forewing discs is coordinated with the increase in volume of the leg and eye-antennal (head) discs as well as with larval size. We found that the growth rate of the rudimentary forewing discs differs from the leg discs but is similar to the growth of the head (eye-antennal) discs relative to larval size, suggesting that growth of each type of imaginal disc may be differentially regulated. In addition to their larger size, the soldier eye-antennal discs increase in width as they undergo morphogenesis to generate the characteristic shape of the large soldier head, suggesting that the rudimentary forewing discs may regulate their patterning in addition to their growth. Finally, we observe little growth of the leg and eye-antennal discs during the bipotential stage, while in minor worker development these discs grow at similar rates to one another in coordination with larval size to generate the smaller minor worker subcaste. Our results suggest that rudimentary organs with regulatory functions may participate in new patterns of inter-organ coordination and regulation to produce novel phenotypes and complex worker caste systems. We provide characterization of larval development and imaginal disc growth and morphogenesis with the aim of highlighting this as an emerging system for the study of rudimentary organs during development and evolution.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hendrik Pannen ◽  
Tim Rapp ◽  
Thomas Klein

Loss of ESCRT function in Drosophila imaginal discs is known to cause neoplastic overgrowth fuelled by mis-regulation of signalling pathways. Its impact on junctional integrity, however, remains obscure. To dissect the events leading to neoplasia, we used transmission electron microscopy (TEM) on wing imaginal discs temporally depleted of the ESCRT-III core component Shrub. We find a specific requirement for Shrub in maintaining Septate Junction (SJ) integrity by transporting the Claudin Megatrachea (Mega) to the SJ. In absence of Shrub function, Mega is lost from the SJ and becomes trapped on endosomes coated with the endosomal retrieval machinery Retromer. We show that ESCRT function is required for apical localization and mobility of Retromer positive carrier vesicles, which mediate the biosynthetic delivery of Mega to the SJ. Accordingly, loss of Retromer function impairs the anterograde transport of several SJ core components, revealing a novel physiological role for this ancient endosomal agent.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jing Zhao ◽  
Tao Guo ◽  
Teng Lei ◽  
Jia-Chen Zhu ◽  
Fang Wang ◽  
...  

Genetics ◽  
2020 ◽  
Vol 216 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Sanket Nagarkar ◽  
Ruchi Wasnik ◽  
Pravallika Govada ◽  
Stephen Cohen ◽  
L. S. Shashidhara

Promoter proximal pausing (PPP) of RNA polymerase II has emerged as a crucial rate-limiting step in the regulation of gene expression. Regulation of PPP is brought about by complexes 7SK snRNP, P-TEFb (Cdk9/cycT), and the negative elongation factor (NELF), which are highly conserved from Drosophila to humans. Here, we show that RNAi-mediated depletion of bin3 or Hexim of the 7SK snRNP complex or depletion of individual components of the NELF complex enhances Yki-driven growth, leading to neoplastic transformation of Drosophila wing imaginal discs. We also show that increased CDK9 expression cooperates with Yki in driving neoplastic growth. Interestingly, overexpression of CDK9 on its own or in the background of depletion of one of the components of 7SK snRNP or the NELF complex necessarily, and specifically, needed Yki overexpression to cause tumorous growth. Genome-wide gene expression analyses suggested that deregulation of protein homeostasis is associated with tumorous growth of wing imaginal discs. As both Fat/Hippo/Yki pathway and PPP are highly conserved, our observations may provide insights into mechanisms of oncogenic function of YAP—the ortholog of Yki in humans.


Sign in / Sign up

Export Citation Format

Share Document