scholarly journals Three-Dimensional Printing and Navigation in Bone Tumor Resection

3D Printing ◽  
2018 ◽  
Author(s):  
Lucas E. Ritacco ◽  
Candelaria Mosquera ◽  
Ignacio Albergo ◽  
Domingo L. Muscolo ◽  
German L. Farfalli ◽  
...  
2018 ◽  
Vol 118 (6) ◽  
pp. 898-905 ◽  
Author(s):  
Jong Woong Park ◽  
Hyun Guy Kang ◽  
Kwun Mook Lim ◽  
Dae Woo Park ◽  
June Hyuk Kim ◽  
...  

2020 ◽  
Vol Volume 12 ◽  
pp. 6533-6540
Author(s):  
Daniel A Müller ◽  
Yannik Stutz ◽  
Lazaros Vlachopoulos ◽  
Mazda Farshad ◽  
Philipp Fürnstahl

Author(s):  
Carlos G. Helguero ◽  
Juan Castro ◽  
César Ochoa ◽  
Fausto Maldonado ◽  
Emilio A. Ramírez ◽  
...  

Abstract Custom three-dimensional (3D) printed guides are being used in the operative room as an aid to surgeons for increasing the accuracy of their cutting and resection techniques. In terms of bone-tumor resection, the cutting path printed in the custom jig is significantly important for two main purposes: first, the required fit for the implant that will replace the resected bone section and, second, the interaction between the remaining, healthy bone and the new implant in terms of forces, stresses and deformation. Bone tumor resection has posed a challenge in orthopedic oncology, specifically due to a high level of difficulty in performing a limb-sparing surgery with negative margins on the remaining bone. A straight cutting path is usually used in clinical procedures due to the type of tooling available inside the operative room. 3D printed cutting path guides offer the possibility to evolve from a straight to a different path, e.g. a tapered path, and overcome fitting problems during surgery. This work investigates the current straight cutting path used for typical bone tumor resection and compares it to a proposed tapered cutting path in terms of both implant fitting and stress analysis. Finite element analysis software is used to simulate a compression force exerted over the femur bone. Different taper cut angles are studied and results are reported to obtain an ideal angle for resection. Results are presented to evidence the need to evolve from the current resection technique in order to minimize the number of revision surgeries and for a better quality of life of patients under this type of surgical procedure.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Sign in / Sign up

Export Citation Format

Share Document