scholarly journals Wind Turbine Airfoil Boundary Layer Optimization Using Genetic Algorithm with 3D Rotational Augmentation

Author(s):  
Youjin Kim ◽  
Galih Bangga ◽  
Antonio Delgado
2020 ◽  
Vol 8 (3) ◽  
pp. 212 ◽  
Author(s):  
Irene Solís-Gallego ◽  
Katia María Argüelles Díaz ◽  
Jesús Manuel Fernández Oro ◽  
Sandra Velarde-Suárez

Noise has arisen as one of the main restrictions for the deployment of wind turbines in urban environments or in sensitive ecosystems like oceans for offshore and coastal applications. An LES model, adequately planned and resolved, is useful to describe the noise generation mechanisms in wind turbine airfoils. In this work, a wall-resolved LES model of the turbulent flow around a typical wind turbine airfoil is presented and described in detail. The numerical results obtained have been validated with hot wire measurements in a wind tunnel. The description of the boundary layer over the airfoil provides an insight into the main noise generation mechanism, which is known to be the scattering of the vortical disturbances in the boundary layer into acoustic waves at the airfoil trailing edge. In the present case, 2D wave instabilities are observed in both suction and pressure sides, but these perturbations are diffused into a turbulent boundary layer prior to the airfoil trailing edge, so tonal noise components are not expected in the far-field noise propagation. The results obtained can be used as input data for the prediction of noise propagation to the far-field using a hybrid aeroacoustic model.


2001 ◽  
Vol 2001 (0) ◽  
pp. 178
Author(s):  
Takashige Inaba ◽  
Hikaru Matsumiya ◽  
Eiji Kato ◽  
Tetsuya Kogaki ◽  
Makoto lida

2014 ◽  
Vol 668-669 ◽  
pp. 230-235
Author(s):  
Ya Qiong Chen ◽  
Yue Fa Fang ◽  
Sheng Guo

S827 wind turbine airfoil was considered as original airfoil, which was created by NREL. Linear perturbation methods were used to get new shape parameters of wind turbine airfoil. Optimization of original airfoil was carried out based on genetic algorithm and XFOIL software, which was used to get aerodynamic performance. Results shows that the lift-drag radio of optimized airfoil was remarkable improved under multiple working conditions. Aerodynamic performance of optimized airfoil was much better comparing with the original airfoil. The optimal design method for wind turbine airfoil used in this paper can be used to optimization design of high lift-drag ratio wind turbine airfoil. Engineering practical value is considered by this method and it is feasible and efficient through example.


2013 ◽  
Author(s):  
Mohammad H. Djavareshkian ◽  
Amir Latifi

In this research, optimization of a wind turbine airfoil is done by Genetic Algorithm (GA) as optimization method, coupled with CFD (Computational Fluid Dynamics) and Artificial Neural Network (ANN). A pressure-based implicit procedure is used to solve the Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation to calculate the aerodynamic coefficients. The boundedness criteria for the numerical procedure are determined from Normalized Variable Diagram (NVD) scheme and the k–ε eddy-viscosity turbulence model is utilized. ANN has been used as surrogate model to reduce computational cost and time. Single objective and multi objective optimization of wind turbine airfoil have been performed and the results of optimization are presented. To reduce the number of design variables and producing a smooth shaped airfoil, modified Hicks-Henne functions are used. In this process, the Eppler E387 airfoil has been applied as the base airfoil. Angle of attack varies from 0 to 20 degrees and Reynolds number of the flow is 460000.


Sign in / Sign up

Export Citation Format

Share Document