Continuous One Step Linear Multi-Step Hybrid Block Method for the Solution of First Order Linear and Nonlinear Initial Value Problem of Ordinary Differential Equations
In this paper, a collocation approach for solving initial value problem of ordinary differential equations (ODEs) of the first order is presented. This approach consists of reducing the problem to a set of linear multi-step algebraic equations by approximating the ODE with a shifted Legendre polynomial basis function to determine the unknown constants. The proposed method is simple and efficient; it approximates the solutions very closely to the closed form solutions. Some problems were considered using Maple Software to illustrate the simplicity, efficiency and accuracy of the method. The results obtained revealed that the hybrid method can be suitable candidate for all forms of first order initial value problems of ordinary differential equations.