scholarly journals Development of Graphene Based Cobalt-Ferrites Nanocomposites for Microwave Shielding

2021 ◽  
Author(s):  
Muhammad Siyar ◽  
Asghari Maqsood

The study is related to cobalt ferrites nanocomposites embedded with graphene nanosheets, prepared by co-precipitation method. Various doping of graphene from 0.1% up to 1% were applied within the cobalt ferrite structure to study its microwave and mechanical effects on the nanocomposites. Microstructural analysis confirms the homogeneous dispersion and successful adhesion of graphene nanosheets within the cobalt ferrite matrix. Microwave absorbing capacity of these samples was studied by Agilent network analyzer in low frequency band of microwave (1MHz to 2 GHz), Results reveals that graphene incorporation not only improved the absorption capacity of cobalt ferrites (13dB-17d), but also widened its maximum absorption peak. This change was supposed to be due to inhomogeneity and combine effects of electric (graphene), and magnetic dielectric nature (cobalt ferrites). Further mechanical characterizations reveal that our composites samples have higher flexural strength (19.92 MPa for 1% loading) and improved toughness (>6000 J/mm2) compare to pure cobalt ferrites (10.28 MPa, 1000 J/mm2).

2014 ◽  
Vol 938 ◽  
pp. 14-18 ◽  
Author(s):  
Hemal Khatri ◽  
G. Packiaraj ◽  
Rajshree B. Jotania

Cobalt ferrite (Cofe2o4) particles were synthesized with and without presence of surfactants using a co-precipitation method. Three surfactants Cetyl Tri methyl Ammonium Bromide (CTAB-cationic), Sodium dodecylbenzenesulphonate (anionic), Triton X-100 (nonionic), were used and investigate their effects on the structural and dielectric properties of CoFe2O4 particles. The ferrite precursors were first pre calcined in a muffle furnace at 500°C and then calcined at 950°C. Structural, dielectric and magnetic properties of prepared particles were investigated using X-ray powder diffraction, Dielectric and Low field ac magnetic susceptibility measurement. Phase purity of prepared samples was confirmed by X-ray diffraction. The sample with surfactant Triton X-100 shows the highest values of dielectric constant at low frequency.


2010 ◽  
Vol 322 (21) ◽  
pp. 3470-3475 ◽  
Author(s):  
Yue Zhang ◽  
Zhi Yang ◽  
Di Yin ◽  
Yong Liu ◽  
ChunLong Fei ◽  
...  

1997 ◽  
Vol 20 (1) ◽  
pp. 93-101 ◽  
Author(s):  
H H Joshi ◽  
P B Pandya ◽  
K B Modi ◽  
N N Jani ◽  
G J Baldha ◽  
...  

2019 ◽  
Vol 69 (12) ◽  
pp. 3345-3348
Author(s):  
Maria Colie ◽  
Dan Eduard Mihaiescu ◽  
Daniela Istrati ◽  
Adrian Vasile Surdu ◽  
Bogdan Vasile ◽  
...  

In this paper we describe the synthesis of a core-shell material using yttrium superconducting ceramic material (YBCO) and cobalt ferrite nanoparticles in order to obtain a nanostructured material with magnetic properties. The advantages of such material aim the selective deposition of nanofilms oriented in magnetic fields. To obtain this core-shell material, the solutions of the nitrates were first obtained by dissolving the salts in demineralised water. The suspension with cobalt ferrite nanoparticles was obtained by co-precipitation method. To obtain YBa2Cu3O7-�- coated magnetic nanoparticles by autocombustion reaction the solutions of nitrates and citric acid were used. The ratio of the metal ions: Y:Ba:Cu was 1:2:3, and between the oxidant and the reducing agent was used a citrate / nitrate mass ratio equal with 0.7. The final material was analyzed by X-ray diffraction (XRD), electronic scanning microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM).


Sign in / Sign up

Export Citation Format

Share Document