scholarly journals Branched covers of elliptic curves and Kähler groups with exotic finiteness properties

2019 ◽  
Vol 69 (1) ◽  
pp. 335-363 ◽  
Author(s):  
Claudio Llosa Isenrich



2019 ◽  
Vol 372 (8) ◽  
pp. 5869-5890 ◽  
Author(s):  
Martin R. Bridson ◽  
Claudio Llosa Isenrich




Author(s):  
Henry McKean ◽  
Victor Moll
Keyword(s):  


2004 ◽  
Vol 9 (4) ◽  
pp. 331-348
Author(s):  
V. Garbaliauskienė

A joint universality theorem in the Voronin sense for L-functions of elliptic curves over the field of rational numbers is proved.





Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.



Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.



2009 ◽  
Vol 29 (1) ◽  
pp. 158-160
Author(s):  
He-gang FU ◽  
Ying CHEN
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document