scholarly journals Principal specializations of Schubert polynomials in classical types

2021 ◽  
Vol 4 (2) ◽  
pp. 273-287
Author(s):  
Eric Marberg ◽  
Brendan Pawlowski
Keyword(s):  
2011 ◽  
Vol 226 (1) ◽  
pp. 840-886 ◽  
Author(s):  
Takeshi Ikeda ◽  
Leonardo C. Mihalcea ◽  
Hiroshi Naruse

2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


10.37236/4139 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Carolina Benedetti ◽  
Nantel Bergeron

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood combinatorially from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottile's $r$-Bruhat order, along with certain operators associated to this order. Then, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of  Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem. This is the first step of our more general program of showing combinatorially  the positivity of the multiplication of a dual $k$-Schur function by a Schur function.


1996 ◽  
Vol 348 (9) ◽  
pp. 3591-3620 ◽  
Author(s):  
Sergey Fomin ◽  
Anatol N. Kirillov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document