scholarly journals Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator

Author(s):  
Arman Jahed ◽  
Farzin Piltan ◽  
Hossein Rezaie ◽  
Bamdad Boroomand
Author(s):  
Panchand Jha

<span>Inverse kinematics of manipulator comprises the computation required to find the joint angles for a given Cartesian position and orientation of the end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network and adaptive neural fuzzy inference system techniques can be gainfully used to yield the desired results. This paper proposes structured artificial neural network (ANN) model and adaptive neural fuzzy inference system (ANFIS) to find the inverse kinematics solution of robot manipulator. The ANN model used is a multi-layered perceptron Neural Network (MLPNN). Wherein, gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that ANFIS gives better result and minimum error as compared to ANN.</span>


Author(s):  
Srinivasan Alavandar ◽  
M. J. Nigam

Obtaining the joint variables that result in a desired position of the robot end-effector called as inverse kinematics is one of the most important problems in robot kinematics and control. As the complexity of robot increases, obtaining the inverse kinematics solution requires the solution of non linear equations having transcendental functions are difficult and computationally expensive. In this paper, using the ability of ANFIS (Adaptive Neuro-Fuzzy Inference System) to learn from training data, it is possible to create ANFIS, an implementation of a representative fuzzy inference system using a BP neural network-like structure, with limited mathematical representation of the system. Computer simulations conducted on 2 DOF and 3DOF robot manipulator shows the effectiveness of the approach.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


Sign in / Sign up

Export Citation Format

Share Document