scholarly journals Inverse Kinematic Solution of 5R Manipulator using ANN and ANFIS

Author(s):  
Panchand Jha

<span>Inverse kinematics of manipulator comprises the computation required to find the joint angles for a given Cartesian position and orientation of the end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network and adaptive neural fuzzy inference system techniques can be gainfully used to yield the desired results. This paper proposes structured artificial neural network (ANN) model and adaptive neural fuzzy inference system (ANFIS) to find the inverse kinematics solution of robot manipulator. The ANN model used is a multi-layered perceptron Neural Network (MLPNN). Wherein, gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that ANFIS gives better result and minimum error as compared to ANN.</span>

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1444
Author(s):  
Saeed Na’amnh ◽  
Muath Bani Salim ◽  
István Husti ◽  
Miklós Daróczi

Nowadays, Busbars have been extensively used in electrical vehicle industry. Therefore, improving the risk assessment for the production could help to screen the associated failure and take necessary actions to minimize the risk. In this research, a fuzzy inference system (FIS) and artificial neural network (ANN) were used to avoid the shortcomings of the classical method by creating new models for risk assessment with higher accuracy. A dataset includes 58 samples are used to create the models. Mamdani fuzzy model and ANN model were developed using MATLAB software. The results showed that the proposed models give a higher level of accuracy compared to the classical method. Furthermore, a fuzzy model reveals that it is more precise and reliable than the ANN and classical models, especially in case of decision making.


2019 ◽  
Vol 8 (9) ◽  
pp. 391 ◽  
Author(s):  
Hossein Moayedi ◽  
Dieu Tien Bui ◽  
Mesut Gör ◽  
Biswajeet Pradhan ◽  
Abolfazl Jaafari

In this paper, a neuro particle-based optimization of the artificial neural network (ANN) is investigated for slope stability calculation. The results are also compared to another artificial intelligence technique of a conventional ANN and adaptive neuro-fuzzy inference system (ANFIS) training solutions. The database used with 504 training datasets (e.g., a range of 80%) and testing dataset consists of 126 items (e.g., 20% of the whole dataset). Moreover, variables of the ANN method (for example, nodes number for each hidden layer) and the algorithm of PSO-like swarm size and inertia weight are improved by utilizing a total of 28 (i.e., for the PSO-ANN) trial and error approaches. The key properties were fed as input, which were utilized via the analysis of OptumG2 finite element modelling (FEM), containing undrained cohesion stability of the baseline soil (Cu), angle of the original slope (β), and setback distance ratio (b/B) where the target is selected factor of safety. The estimated data for datasets of ANN, ANFIS, and PSO-ANN models were examined based on three determined statistical indexes. Namely, root mean square error (RMSE) and the coefficient of determination (R2). After accomplishing the analysis of sensitivity, considering 72 trials and errors of the neurons number, the optimized architecture of 4 × 6 × 1 was determined to the structure of the ANN model. As an outcome, the employed methods presented excellent efficiency, but based on the ranking method, the PSO-ANN approach might have slightly better efficiency in comparison to the algorithms of ANN and ANFIS. According to statistics, for the proper structure of PSO-ANN, the indexes of R2 and RMSE values of 0.9996, and 0.0123, as well as 0.9994 and 0.0157, were calculated for the training and testing networks. Nevertheless, having the ANN model with six neurons for each hidden layer was formulized for further practical use. This study demonstrates the efficiency of the proposed neuro model of PSO-ANN in estimating the factor of safety compared to other conventional techniques.


2015 ◽  
Vol 9 ◽  
pp. 60-67 ◽  
Author(s):  
Marziyeh Ramzi ◽  
Mahdi Kashaninejad ◽  
Fakhreddin Salehi ◽  
Ali Reza Sadeghi Mahoonak ◽  
Seyed Mohammad Ali Razavi

Sign in / Sign up

Export Citation Format

Share Document