scholarly journals Dual Population Genetic Algorithm for Solving Constrained Optimization Problems

Author(s):  
A. J. Umbarkar ◽  
M. S. Joshi ◽  
P. D. Sheth
2010 ◽  
Vol 450 ◽  
pp. 560-563
Author(s):  
Dong Mei Cheng ◽  
Jian Huang ◽  
Hong Jiang Li ◽  
Jing Sun

This paper presents a new method of dynamic sub-population genetic algorithm combined with modified dynamic penalty function to solve constrained optimization problems. The new method ensures the final optimal solution yields all constraints through re-organizing all individuals of each generation into two sub-populations according to the feasibility of individuals. And the modified dynamic penalty function gradually increases the punishment to bad individuals with the development of the evolution. With the help of the penalty function and other improvements, the new algorithm prevents local convergence and iteration wandering fluctuations. Typical instances are used to evaluate the optimizing performance of this new method; and the result shows that it can deal with constrained optimization problems well.


2014 ◽  
Vol 8 (1) ◽  
pp. 904-912 ◽  
Author(s):  
Yalong Zhang ◽  
Hisakazu Ogura ◽  
Xuan Ma ◽  
Jousuke Kuroiwa ◽  
Tomohiro Odaka

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jiquan Wang ◽  
Zhiwen Cheng ◽  
Okan K. Ersoy ◽  
Panli Zhang ◽  
Weiting Dai ◽  
...  

An improved real-coded genetic algorithm (IRCGA) is proposed to solve constrained optimization problems. First, a sorting grouping selection method is given with the advantage of easy realization and not needing to calculate the fitness value. Secondly, a heuristic normal distribution crossover (HNDX) operator is proposed. It can guarantee the cross-generated offsprings to locate closer to the better one among the two parents and the crossover direction to be very close to the optimal crossover direction or to be consistent with the optimal crossover direction. In this way, HNDX can ensure that there is a great chance of generating better offsprings. Thirdly, since the GA in the existing literature has many iterations, the same individuals are likely to appear in the population, thereby making the diversity of the population worse. In IRCGA, substitution operation is added after the crossover operation so that the population does not have the same individuals, and the diversity of the population is rich, thereby helping avoid premature convergence. Finally, aiming at the shortcoming of a single mutation operator which cannot simultaneously take into account local search and global search, this paper proposes a combinational mutation method, which makes the mutation operation take into account both local search and global search. The computational results with nine examples show that the IRCGA has fast convergence speed. As an example application, the optimization model of the steering mechanism of vehicles is formulated and the IRCGA is used to optimize the parameters of the steering trapezoidal mechanism of three vehicle types, with better results than the other methods used.


Sign in / Sign up

Export Citation Format

Share Document