Three-dimensional Vibration Suppression of an Euler-Bernoulli Beam via Boundary Control Method

2015 ◽  
Vol 28 (5 (B)) ◽  
2016 ◽  
Vol 23 (19) ◽  
pp. 3196-3215 ◽  
Author(s):  
Wei He ◽  
Chuan Yang ◽  
Juxing Zhu ◽  
Jin-Kun Liu ◽  
Xiuyu He

In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.


2019 ◽  
Vol 230 (10) ◽  
pp. 3439-3456 ◽  
Author(s):  
Shilei Zuo ◽  
Yang Liu ◽  
Kai Zhang ◽  
Gengkai Hu

Author(s):  
Jiaqi Zhong ◽  
Xiaolei Chen ◽  
Yupeng Yuan ◽  
Jiajia Tan

This paper addresses the problem of active vibration suppression for a class of Euler-Bernoulli beam system. The objective of this paper is to design a hybrid temporal-spatial differential controller, which is involved with the in-domain and boundary actuators, such that the closed-loop system is stable. The Lyapunov’s direct method is employed to derive the sufficient condition, which not only can guarantee the stabilization of system, but also can improve the spatial cooperation of actuators. In the framework of the linear matrix inequalities (LMIs) technology, the gain matrices of hybrid controller can obtained by developing a recursive algorithm. Finally, the effectiveness of the proposed methodology is demonstrated by applying a numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document