adaptive boundary control
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2224
Author(s):  
Oscar F. Murillo-García ◽  
Francisco Jurado

Several phenomena in nature are subjected to the interaction of various physical parameters, which, if these latter are well known, allow us to predict the behavior of such phenomena. In most cases, these physical parameters are not exactly known, or even more these are unknown, so identification techniques could be employed in order to estimate their values. Systems for which their inputs and outputs vary both temporally and spatially are the so-called distributed parameter systems (DPSs) modeled through partial differential equations (PDEs). The way in which their parameters evolve with respect to time may not always be known and may also induce undesired behavior of the dynamics of the system. To reverse the above, the well-known adaptive boundary control technique can be used to estimate the unknown parameters assuring a stable behavior of the dynamics of the system. In this work, we focus our attention on the design of an adaptive boundary control for a parabolic type reaction–advection–diffusion PDE under the assumption of unknown parameters for both advection and reaction terms and Robin and Neumann boundary conditions. An identifier PDE system is established and parameter update laws are designed following the certainty equivalence approach with a passive identifier. The performance of the adaptive Neumann stabilizing controller is validated via numerical simulation.


2020 ◽  
Vol 105 ◽  
pp. 77-85
Author(s):  
Xinling Yue ◽  
Yuhua Song ◽  
Jianxiao Zou ◽  
We He

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yun Fu ◽  
Yu Liu ◽  
Lingyan Hu ◽  
Lingxi Peng

This paper addresses the problems of vibration reduction and attitude tracking for a flexible spacecraft subject to external disturbances and uncertainties. Based on Hamilton’s principle, flexible spacecraft is modelled by a coupled nonlinear partial differential equation with ordinary differential equations. Adaptive boundary control scheme is adopted to stabilize the vibration displacement of flexible appendage into a small neighbourhood of original position and simultaneously maintain attitude angle within the desired angle region. Two disturbance adaptive laws are constructed to attenuate the effect of unknown external disturbances. The well posedness of the controlled system is proven by using the semigroup theory. The proposed adaptive boundary control scheme can guarantee the uniform boundedness of the closed-loop system. Numerical simulation results illustrate the effectiveness of the proposed control scheme.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
B. Chentouf ◽  
N. Smaoui ◽  
A. Alalabi

In this paper, we study the nonlinear adaptive boundary control problem of the modified generalized Korteweg–de Vries–Burgers equation (MGKdVB) when the spatial domain is 0,1. Four different nonlinear adaptive control laws are designed for the MGKdVB equation without assuming the nullity of the physical parameters ν, μ, γ1, and γ2 and depending whether these parameters are known or unknown. Then, using Lyapunov theory, the L2-global exponential stability of the solution is proven in each case. Finally, numerical simulations are presented to illustrate the developed control schemes.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988646
Author(s):  
Weicun Zhang ◽  
Qing Li ◽  
Yuzhen Zhang ◽  
Ziyi Lu ◽  
Cheng Nian

In this article, a weighted multiple model adaptive boundary control scheme is proposed for a flexible manipulator with unknown large parameter uncertainties. First, the uncertainties are approximatively covered by a finite number of constant models. Second, based on Euler–Bernoulli beam theory and Hamilton principle, the distributed parameter model of the flexible manipulator is constructed in terms of partial differential equation for each local constant model. Correspondingly, local boundary controllers are designed to control the manipulator movement and suppress its vibration for each partial differential equation model, which are based on Lyapunov stability theory. Then, a novel weighted multiple model adaptive control strategy is developed based on an improved weighting algorithm. The stability of the overall closed-loop system is ensured by virtual equivalent system theory. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document