Phenotype Matching of Donor Red Blood Cell Units for Nonalloimmunized Sickle Cell Disease Patients: A Survey of 1182 North American Laboratories

2005 ◽  
Vol 129 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Melanie Osby ◽  
Ira A. Shulman

Abstract Context.—The transfusion of donor red blood cell units (RBCs) that lack certain red cell antigens (such as C, E, and K) when the corresponding antigens are absent from the recipient's red cells has been shown to reduce the risk of red cell alloimmunization in sickle cell disease patients. However, data are limited regarding the extent to which transfusion services routinely perform red cell antigen phenotype testing of nonalloimmunized sickle cell disease patients, and then use that information to select donor RBCs lacking 1 or more of the red cell antigens that the patient's red cells do not express. Objective.—To determine the extent to which transfusion services routinely perform red cell antigen phenotype testing of nonalloimmunized sickle cell disease patients, and then use that information to select donor RBCs lacking 1 or more of the red cell antigens that the patient's red cells do not express. Design.—An educational subsection of a College of American Pathologists Proficiency Testing Survey (J-C 2003) assessed transfusion service practices regarding performance of red cell antigen phenotype testing of nonalloimmunized sickle cell disease patients and how transfusion services use this information for the selection of donor RBCs. The data analysis of the survey included 1182 North American laboratories. Results.—Data from 1182 laboratories were included in the survey analysis, of which the majority (n = 743) reported that they did not routinely perform phenotype testing of sickle cell disease patients for antigens other than ABO and D. The other 439 laboratories reported that they did routinely perform phenotype testing of sickle cell disease patients for antigens in addition to ABO and D. The majority of these 439 laboratories (three fourths; n = 330) reported that they used these patient data for prophylactic matching with donor RBCs when sickle cell disease patients required transfusion. When phenotype-matched donor RBCs were used, the antigens most commonly matched (85% of the time) were C, E, and K. Conclusions.—The majority of North American hospital transfusion service laboratories do not determine the red cell antigen phenotype of nonalloimmunized sickle cell disease patients beyond ABO and D. Those laboratories that do determine the red cell phenotype of nonalloimmunized sickle cell disease patients beyond ABO and D most commonly match for C, E, and K antigens when phenotype-matched donor RBCs are used.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4285-4285
Author(s):  
Veronica Cook ◽  
Teresa Munson ◽  
Elpidio Pena ◽  
Ashok Raj

Abstract Background: Erythrocytapheresis, or red blood cell exchange (RCE) is a non-invasive procedure in which a patient's erythrocytes are removed from the bloodstream while being replaced with erythrocytes from blood donors. RCE is commonly used as a transfusion technique in patients with sickle cell disease (SCD) to help treat and prevent complications associated with sickling of erythrocytes and iron overload. The AABB consensus report (1) outlines the procedural guidelines for RCE including appropriate indications and ideal forms of vascular access. However, the guidelines make no recommendation for determining the hematocrit (Hct) of the red cell bags for the procedure. Institutions take several different approaches to determine how many red cell units to exchange. The number of units needed depends on the volume and Hct of the individual units as well as the patient's pre-procedure Hct and HbS levels, height, weight, and the desired HbS and Hct targets. Red cell units are routinely labeled with volume, but are not generally labeled with Hct. The AABB consensus report (1) states that some institutions use an estimated Hct of 56% to 57% for each unit. The report rationalizes the use of an estimated Hct for input for the RCE, by citing the approximated Hct of bags of red cells (55% to 60%) with additive solution produced from whole blood donation, based on limited data. The goal of our study was to determine the average Hct on the red cell units used for RCE. Methods: This study used a retrospective chart review to investigate the Hct of red cell units during a RCE in a calendar year. Our institution uses pre-storage leuko-reduced red blood cells units in citrate phosphate dextrose adenine (CPDA-1) and adsol preservative (AS-1), which are 21 days old or less for RCE. The average Hct of the bags of red cells infused during the procedure was determined by accessing each bag for a small sample of blood to determine the Hct. Data was excluded if the patient did not meet standard weight requirements (> 30 kg) or required additional treatment protocols including the use of washed cells or machine priming. Results: A total of 297 encounters were recorded for 30 different patients. A total of 1953 bags (approximately 517 liters of red cell units in volume) were administered. Data from the encounters were used to calculate measures of central tendency. The average calculated Hct for each encounter was 63.3%, with a median and mode Hct being 63% and 62%. The range of Hct from the bags was 54.6% to 72.9%. The average Hct of the bags ranged from 60.6% (in March) to 64.8 % (in July). Conclusions: Our study suggests a higher average Hct of transfused red cell units than stated in the AABB consensus report (1), which was based on limited data. Our findings indicate that a standardized average of 63.3%, would be appropriate for our institution. Conversely, our findings also signify that the standardized average Hct must be determined in each institution prior to their application for RCE. However, our data also reveals that it is possible to subject patients to estimates as far as 9.7% above and 9.6 % below the true average Hct of the red cell bags used. The process of determination of Hct for each of the red cell units increases the time of pre-service activities, laboratory costs, and the overall infusion center time for the patients leading to higher costs per infusion. Consequently, using a standardized average of the Hct would result in cost savings. We have therefore adopted the practice of using the standardized average of Hct of 63.3% for RCE in our patients. Reference: 1. Biller E, Zhao Y, Berg M, Boggio L, Capocelli KE, Fang DC, Koepsell S, Music-Aplenc L, Pham HP, Treml A, Weiss J, Wool G, Baron BW. Red blood cell exchange in patients with sickle cell disease-indications and management: a review and consensus report by the therapeutic apheresis subsection of the AABB. 2018 Aug;58(8):1965-1972. doi: 10.1111/trf.14806 Disclosures Munson: Terumo Medical Corporation: Consultancy, Honoraria, Speakers Bureau. Raj: Terumo Medical Corporation: Honoraria, Speakers Bureau; Global biotherapeutics: Speakers Bureau; Forma therapeutics: Consultancy.


2016 ◽  
Vol 11 (3) ◽  
pp. 132-139 ◽  
Author(s):  
M. R. Dezan ◽  
V. B. Oliveira ◽  
J. V. S. Bianchi ◽  
V. Rodrigues ◽  
J. H. Solano ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4823-4823
Author(s):  
Sergio Cabibbo ◽  
Agostino Antolino ◽  
Giovanni Garozzo ◽  
Carmelo Fidone ◽  
Pietro Bonomo

Abstract For patients with severe SCD not eligible for hydroxyurea, two major therapeutic options are currently available: blood transfusion, and bone marrow transplantation. Either urgent or chronic red blood cell transfusion therapy, is widely used in the management of SCD but determines a progressive increase of ferritin level and is also limited by the development of antibodies to red cell antigens. The introduction of chronic red blood cell exchange and prestorage filtration to remove leucocytes and the use of techniques for multicomponent donation could be a good solutions. Thus, the aims of our studies were to evaluate the clinical effects of the different blood components in terms of annual transfusion needs and the intervals between transfusion, moreover we evaluated the efficacy of chronic red blood cell exchange (manual or automatic with cell separator) in preventing SCD complications and limiting iron overload. In our center we follow 78 patients affected by Sickle Cell Disease. We selected 36 patients occasionally treated with urgent red blood cell exchange because they had less than 2 complications/Year, and 42 patients regularly treated with chronic red blood cell exchange because they had more than 2 complications/Year with Hospital Admission. Moreover among these we selected 10 patients for fulfilling the criteria of continuous treatment at the Centre for at least 48 months with no interruptions, even sporadic and absolute transfusion dependency. All 10 patients were evaluated for a period of 4 years, during which two different systems of producing RCC were used. In the second two the patients were transfused with RCC obtained from filtering whole blood prestorage or with RCC from apheresis filtered prestorage. These products differed from those used in the preceding two years, during which the leucodepletion was obtained by bed-side filtration For all the patients we performed 782 automatic red blood cell exchanges and 4421 units of RCC were transfused. The exchange procedures were extremely well-tolerated by the patients and adverse effects were limited to symptoms of hypocalcaemia during automatic red blood cell exchange with cell separator. After every red blood cell exchange we obtained HbS level < 30%. The10 patients selected received respectively a mean of 6.9 and 6.1 units of RBCs exchanged per automatic procedure, in the first two years and in the second two years. Alloantibody developed in 14 patients but only 2 clinically significant and about the observed frequency of transfusion reactions it was very low. All patients treated with chronic red blood cell exchange had an improvement of the quality of life with a reduced number of complications/year (<2/year) and good compliance and moreover patients had limited iron overload making chelating therapy easier. In conclusion this study was focused on the most suitable characteristics of blood components for use in sickle cell disease patients and the choice of systematically adopting prestorage filtration of whole blood, enabled us to have RCC with a higher Hb concentration than standard. Moreover chronic manual or automatic red blood cell exchange as an alternative approach to simple long-term RBC transfusions give many advantages by being more rapid and tolerable as well as clinically safe and effective and minimize the development of iron overload especially when procedure was carried out with an automatic apparatus. To note that the clinical advantages for patients derived from good selection of the donor and good practices in the production of the blood components


Transfusion ◽  
2011 ◽  
Vol 51 (8) ◽  
pp. 1732-1739 ◽  
Author(s):  
Michele LaSalle-Williams ◽  
Rachelle Nuss ◽  
Tuan Le ◽  
Laura Cole ◽  
Kathy Hassell ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Mahammed Khan Suheb ◽  
Omar Abughanimeh ◽  
Steven Ebers ◽  
Julie Eclov ◽  
Aleh Bobr ◽  
...  

Background: Pregnant patients with sickle cell disease (SCD) have higher morbidity compared to patients without SCD. SCD during pregnancy can increase the risk of fetal and obstetrical complications including preterm birth, preeclampsia, and others. Moreover, during pregnancy SCD can become more severe resulting in more sickle cell vasoocclusive crisis. Prophylactic transfusion during pregnancy has been used in practice to reduce sickle cell pain crisis since hydroxyurea is contraindicated during pregnancy. However, using prophylactic red blood cell exchange (RBCX) has been a controversial topic. In this study, we aim to evaluate the outcomes of red blood cell exchange in pregnant patients with SCD Methods: This is a retrospective study. We evaluated the charts of three pregnant patients who were enrolled in the chronic RBCX program at the University of Nebraska Medical Center at the time of their pregnancy. Data was collected to assess the sickle cell disease related complications during pregnancy, outcomes of pregnancy, and safety of the red blood cell exchange. Results: A total of 19 exchange procedures were performed for three pregnant patients while being enrolled in the chronic red blood cell exchange program. Patients demographic is summarized in table 1. The indication for enrollment in the red cell exchange program were recurrent vasooclussive crisis in patient 1 and 3, avascular necrosis in patient 2. The pregnancies were uncomplicated except for preeclampsia in the third patient resulting on early delivery. Overall, the three patients had less frequent visits to the emergency room for sickle cell related complications after starting apheresis and during pregnancy (Figure 1). We believe that the modest improvement that was noticed for the third patient was due to late enrollment in the exchange transfusion program and her older age compared to the two other patients Conclusion: Our study shows that red blood cell exchange for SCD patients during pregnancy can be safe, feasible, and can reduce the visits to the emergency room due to SCD related complication. Further larger studies are warranted to confirm this. Disclosures Gundabolu: BioMarin:Consultancy;Bristol Myers Squibb pharmaceuticals:Consultancy.


Sign in / Sign up

Export Citation Format

Share Document