Stochastic Dynamic Analysis and Reliability of a Vessel Rolling in Random Beam Seas

2015 ◽  
Vol 59 (2) ◽  
pp. 113-131 ◽  
Author(s):  
Wei Chai ◽  
Arvid Naess ◽  
Bernt J. Leira
2015 ◽  
Vol 59 (02) ◽  
pp. 113-131
Author(s):  
Wei Chai ◽  
Arvid Naess ◽  
Bernt J. Leira

This article presents a four-dimensional (4D) path integration (PI) approach to study the stochastic roll response and reliability of a vessel in random beam seas. Specifically, a 4D Markov dynamic system is established by combing the single-degree-of freedom model used to represent the ship rolling behavior in random beam seas with a second-order linear filter used to approximate the stationary roll excitation moment. On the basis of the Markov property of the coupled 4D dynamic system, the response statistics of roll motion can be obtained by solving the Fokker-Planck equation of the dynamic system via the 4D PI method. The theoretical principle and numerical implementation of the current state of the art 4D PI method are presented. Moreover, the numerical robustness and accuracy of the 4D PI method are evaluated by comparing with the results obtained by the application of Monte Carlo simulation (MCS). The influence of the restoring terms and the damping terms on the stochastic roll response are investigated. Furthermore, based on the well-known Poisson assumption and the response statistics yielded by the 4D PI technique, evaluation of the reliability associated with high-level response is performed. The performance of the Poisson estimate for different levels of external excitations is evaluated by the versatile MCS technique.


Sign in / Sign up

Export Citation Format

Share Document