seasonal climate
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 124)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Vol 25 ◽  
pp. 100268
Author(s):  
Ileen N. Streefkerk ◽  
Marc J.C. van den Homberg ◽  
Stephen Whitfield ◽  
Neha Mittal ◽  
Edward Pope ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Markéta Poděbradská ◽  
Bruce K. Wylie ◽  
Deborah J. Bathke ◽  
Yared A. Bayissa ◽  
Devendra Dahal ◽  
...  

The ecosystem performance approach, used in a previously published case study focusing on the Nebraska Sandhills, proved to minimize impacts of non-climatic factors (e.g., overgrazing, fire, pests) on the remotely-sensed signal of seasonal vegetation greenness resulting in a better attribution of its changes to climate variability. The current study validates the applicability of this approach for assessment of seasonal and interannual climate impacts on forage production in the western United States semi-arid grasslands. Using a piecewise regression tree model, we developed the Expected Ecosystem Performance (EEP), a proxy for annual forage production that reflects climatic influences while minimizing impacts of management and disturbances. The EEP model establishes relations between seasonal climate, site-specific growth potential, and long-term growth variability to capture changes in the growing season greenness measured via a time-integrated Normalized Difference Vegetation Index (NDVI) observed using a Moderate Resolution Imaging Spectroradiometer (MODIS). The resulting 19 years of EEP were converted to expected biomass (EB, kg ha−1 year−1) using a newly-developed relation with the Soil Survey Geographic Database range production data (R2 = 0.7). Results were compared to ground-observed biomass datasets collected by the U.S. Department of Agriculture and University of Nebraska-Lincoln (R2 = 0.67). This study illustrated that this approach is transferable to other semi-arid and arid grasslands and can be used for creating timely, post-season forage production assessments. When combined with seasonal climate predictions, it can provide within-season estimates of annual forage production that can serve as a basis for more informed adaptive decision making by livestock producers and land managers.


2021 ◽  
Vol 272 ◽  
pp. 107220
Author(s):  
S. Ni ◽  
N.B. Quintana Krupinski ◽  
J. Chonewicz ◽  
J. Groeneveld ◽  
K.L. Knudsen ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. 2055-2071
Author(s):  
Paul D. Zander ◽  
Maurycy Żarczyński ◽  
Wojciech Tylmann ◽  
Shauna-kay Rainford ◽  
Martin Grosjean

Abstract. Varved lake sediments are exceptional archives of paleoclimatic information due to their precise chronological control and annual resolution. However, quantitative paleoclimate reconstructions based on the biogeochemical composition of biochemical varves are extremely rare, mainly because the climate–proxy relationships are complex and obtaining biogeochemical proxy data at very high (annual) resolution is difficult. Recent developments in high-resolution hyperspectral imaging (HSI) of sedimentary pigment biomarkers combined with micro X-ray fluorescence (µXRF) elemental mapping make it possible to measure the structure and composition of varves at unprecedented resolution. This provides opportunities to explore seasonal climate signals preserved in biochemical varves and, thus, assess the potential for annual-resolution climate reconstruction from biochemical varves. Here, we present a geochemical dataset including HSI-inferred sedimentary pigments and µXRF-inferred elements at very high spatial resolution (60 µm, i.e. > 100 data points per varve year) in varved sediments of Lake Żabińskie, Poland, over the period 1966–2019 CE. We compare these data with local meteorological observations to explore and quantify how changing seasonal meteorological conditions influenced sediment composition and varve formation processes. Based on the dissimilarity of within-varve multivariate geochemical time series, we classified varves into four types. Multivariate analysis of variance shows that these four varve types were formed in years with significantly different seasonal meteorological conditions. Generalized additive models (GAMs) were used to infer seasonal climate conditions based on sedimentary variables. Spring and summer (MAMJJA) temperatures were predicted using Ti and total C (Radj2=0.55; cross-validated root mean square error (CV-RMSE) = 0.7 ∘C, 14.4 %). Windy days from March to December (mean daily wind speed > 7 m s−1) were predicted using mass accumulation rate (MAR) and Si (Radj2=0.48; CV-RMSE = 19.0 %). This study demonstrates that high-resolution scanning techniques are promising tools to improve our understanding of varve formation processes and climate–proxy relationships in biochemical varves. This knowledge is the basis for quantitative high-resolution paleoclimate reconstructions, and here we provide examples of calibration and validation of annual-resolution seasonal weather inference from varve biogeochemical data.


2021 ◽  
Author(s):  
Tadas Nikonovas ◽  
Allan C. Spessa ◽  
Stefan H. Doerr ◽  
Gareth D. Clay ◽  
Symon Mezbahuddin

Abstract. Recurrent extreme landscape fire episodes associated with drought events in Indonesia pose severe environmental, societal and economic threats. The ability to predict severe fire episodes months in advance would enable relevant agencies and communities more effectively initiate fire preventative measures and mitigate fire impacts. While dynamic seasonal climate predictions are increasingly skilful at predicting fire-favourable conditions months in advance in Indonesia, there is little evidence that such information is widely used yet by decision makers. In this study, we move beyond forecasting fire risk based on drought predictions at seasonal timescales, and (i) develop a probabilistic early fire warning system for Indonesia (ProbFire) based on multilayer perceptron model using ECMWF SEAS5 dynamic climate forecasts together with forest cover, peatland extent and active fire datasets that can be operated on a standard computer, (ii) benchmark the performance of this new system for the 2002–2019 period, and (iii) evaluate the potential economic benefit such integrated forecasts for Indonesia. ProbFire's event probability predictions outperformed climatology-only based fire predictions at three to five-month lead times in south Kalimantan, south Sumatra and south Papua. In central Sumatra, an improvement was observed only at one month lead time, while in west Kalimantan seasonal predictions did not offer any additional benefit over climatology only-based predictions. We (i) find that seasonal climate forecasts coupled with the fire probability prediction model confer substantial benefits to a wide range of stakeholders involved in fire management in Indonesia and (ii) provide a blueprint for future operational fire warning systems that integrate climate predictions with non-climate features.


2021 ◽  
Author(s):  
Leah Amber Jackson-Blake ◽  
François Clayer ◽  
Elvira de Eyto ◽  
Andrew French ◽  
María Dolores Frías ◽  
...  

Abstract. Advance warning of seasonal conditions has potential to assist water management in planning and risk mitigation, with large potential social, economic and ecological benefits. In this study, we explore the value of seasonal forecasting for decision making at five case study sites located in extratropical regions. The forecasting tools used integrate seasonal climate model forecasts with freshwater impact models of catchment hydrology, lake conditions (temperature, level, chemistry and ecology) and fish migration timing, and were co-developed together with stakeholders. To explore the decision making value of forecasts, we carried out a qualitative assessment of: (1) how useful forecasts would have been for a problematic past season, and (2) the relevance of any “windows of opportunity” (seasons and variables where forecasts are thought to perform well) for management. Overall, stakeholders were optimistic about the potential for improved decision making and identified actions that could be taken based on forecasts. However, there was often a mismatch between those variables that could best be predicted and those which would be most useful for management. Reductions in forecast uncertainty and a need to develop practical hands-on experience were identified as key requirements before forecasts would be used in operational decision making. Seasonal climate forecasts provided little added value to freshwater forecasts in the study sites, and we discuss the conditions under which seasonal climate forecasts with only limited skill are most likely to be worth incorporating into freshwater forecasting workflows.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrej Ceglar ◽  
Andrea Toreti

AbstractSeasonal climate forecasts are a key component of sectoral climate services. Skill and reliability in predicting agro-climate indicators, co-designed with and for European wheat farmers, are here assessed. The main findings show how seasonal climate forecast provides useful information for decision-making processes in the European winter wheat-producing sector. Flowering time can be reliably predicted already at the beginning of the growing season in central and eastern Europe, thus supporting effective variety selection and timely planning of agro-management practices. The predictability of climate events relevant for winter wheat production is strongly dependent on the forecast initialization time as well as the nature of the event being predicted. Overall, regionally skillful and reliable predictions of drought events during the sensitive periods of wheat flowering and grain filling can be made already at the end of winter. On the contrary, predicting excessive wetness seems to be very challenging as no or very limited skill is estimated during the entire wheat growing season. Other approaches, e.g., linked to the use of large-scale atmospheric patterns, should be identified to enhance the predictability of those harmful events.


Sign in / Sign up

Export Citation Format

Share Document