scholarly journals The Daugavet property for spaces of Lipschitz functions

2007 ◽  
Vol 101 (2) ◽  
pp. 261 ◽  
Author(s):  
Yevgen Ivakhno ◽  
Vladimir Kadets ◽  
Dirk Werner

For a compact metric space $K$ the space $\mathrm{Lip}(K)$ has the Daugavet property if and only if the norm of every $f \in \mathrm{Lip}(K)$ is attained locally. If $K$ is a subset of an $L_p$-space, $1<p<\infty$, this is equivalent to the convexity of $K$.

Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6543-6549
Author(s):  
Morteza Essmaili ◽  
Amir Sanatpour

In this paper, we study ?-contractibility of natural Banach function algebras on a compact Hausdorff space. As a consequence, we characterize ?-contractibility of the Lipschitz algebra Lip(X,d?), for a compact metric space (X,d). We also characterize ?-contractibility of certain subalgebras of Lipschitz functions including rational Lipschitz algebras, analytic Lipschitz algebras and differentiable Lipschitz algebras.


1968 ◽  
Vol 20 ◽  
pp. 1150-1164 ◽  
Author(s):  
Ashoke K. Roy

Let X be a compact metric space with metric d. A complex-valued function ƒ on X is said to satisfy a Lipschitz condition if, for all points x and y of X, there exists a constant K such thatThe smallest constant for which the above inequality holds is called the Lipschitz constant for ƒ and is denoted by ||ƒ||d, that is,


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


1980 ◽  
Vol 17 (1) ◽  
pp. 297-299
Author(s):  
Arun P. Sanghvi

This paper describes some sufficient conditions that ensure the convergence of successive random applications of a family of mappings {Γα : α ∈ A} on a compact metric space (X, d) to a stochastic fixed point. The results are similar in spirit to a recent result of Yahav (1975).


2001 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
Francisco Balibrea ◽  
J.S. Cánovas ◽  
A. Linero

<p>We present some results concerning the topological dynamics of antitriangular maps, F:X<sup>2</sup>→ X<sup>2 </sup>with the formvF(x,y)=(g(y),f(x)), where (X,d) is a compact metric space and f,g : X→ X are continuous maps. We make an special analysis in the case of X = [0,1].</p>


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


Sign in / Sign up

Export Citation Format

Share Document