scholarly journals Szemerédi's theorem, frequent hypercyclicity and multiple recurrence

2012 ◽  
Vol 110 (2) ◽  
pp. 251 ◽  
Author(s):  
George Costakis ◽  
Ioannis Parissis

Let $T$ be a bounded linear operator acting on a complex Banach space $X$ and $(\lambda_n)_{n\in\mathsf{N}}$ a sequence of complex numbers. Our main result is that if $|\lambda_n|/|\lambda_{n+1}|\to 1$ and the sequence $(\lambda_n T^n)_{n\in\mathsf{N}}$ is frequently universal then $T$ is topologically multiply recurrent. To achieve such a result one has to carefully apply Szemerédi's theorem in arithmetic progressions. We show that the previous assumption on the sequence $( \lambda_n)_{n\in\mathsf{N}}$ is optimal among sequences such that $|\lambda_{n}|/|\lambda_{n+1}|$ converges in $[0,\infty]$. In the case of bilateral weighted shifts and adjoints of multiplication operators we provide characterizations of topological multiple recurrence in terms of the weight sequence and the symbol of the multiplication operator respectively.

1970 ◽  
Vol 13 (4) ◽  
pp. 469-473
Author(s):  
C-S Lin

Let T—c be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ-set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes Φ(V) of all such operators for any subset V of the complex plane.Let X be a Banach space over the field C of complex numbers with dim Z = ∞, unless otherwise stated, B(X) the Banach algebra of all bounded linear operators and K(X) the closed two-sided ideal of all compact operators on X.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


2020 ◽  
Vol 65 (4) ◽  
pp. 585-597
Author(s):  
Chung-Cheng Kuo

"We show that $\tA+\tB$ is a closed subgenerator of a local $\tC$-cosine function $\tT(\cdot)$ on a complex Banach space $\tX$ defined by $$\tT(t)x=\sum\limits_{n=0}^\infty \tB^n\int_0^tj_{n-1}(s)j_n(t-s)\tC(|t-2s|)xds$$ for all $x\in\tX$ and $0\leq t<T_0$, if $\tA$ is a closed subgenerator of a local $\tC$-cosine function $\tC(\cdot)$ on $\tX$ and one of the following cases holds: $(i)$ $\tC(\cdot)$ is exponentially bounded, and $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ so that $\tB\tC=\tC\tB$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(ii)$ $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ which commutes with $\tC(\cdot)$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(iii)$ $\tB$ is a bounded linear operator on $\tX$ which commutes with $\tC(\cdot)$ on $\tX$. Here $j_n(t)=\frac{t^n}{n!}$ for all $t\in\Bbb R$, and $$\int_0^tj_{-1}(s)j_0(t-s)\tC(|t-2s|)xds=\tC(t)x$$ for all $x\in\tX$ and $0\leq t<T_0$."


1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form


2012 ◽  
Vol 34 (1) ◽  
pp. 132-152 ◽  
Author(s):  
SOPHIE GRIVAUX

AbstractWe study non-recurrence sets for weakly mixing dynamical systems by using linear dynamical systems. These are systems consisting of a bounded linear operator acting on a separable complex Banach space$X$, which becomes a probability space when endowed with a non-degenerate Gaussian measure. We generalize some recent results of Bergelson, del Junco, Lemańczyk and Rosenblatt, and show in particular that sets$\{n_{k}\}$such that$n_{k+1}/n_{k}\to +\infty $, or such that$n_{k}$divides$n_{k+1}$for each$k\ge 0$, are non-recurrence sets for weakly mixing linear dynamical systems. We also give examples, for each$r\ge 1$, of$r$-Bohr sets which are non-recurrence sets for some weakly mixing systems.


1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


1981 ◽  
Vol 22 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Ridgley Lange

Let X be a complex Banach space and let T be a bounded linear operator on X. Then T is decomposable if for every finite open cover of σ(T) there are invariant subspaces Yi(i= 1, 2, …, n) such that(An invariant subspace Y is spectral maximal [for T] if it contains every invariant subspace Z for which σ(T|Z) ⊂ σ(T|Y).).


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3801-3813
Author(s):  
Caixing Gu ◽  
Heidi Keas ◽  
Robert Lee

The concept of a left n-inverse of a bounded linear operator on a complex Banach space was introduced recently. Previously, there have been results on products and tensor products of left n-inverses, and the representation of left n-inverses as the sum of left inverses and nilpotent operators was being discussed. In this paper, we give a spectral characterization of the left n-inverses of a finite (square) matrix. We also show that a left n-inverse of a matrix T is the sum of the inverse of T and two nilpotent matrices.


Sign in / Sign up

Export Citation Format

Share Document