scholarly journals Domination Parameters of the Unitary Cayley Graph of \mathbb{Z}/n\mathbb{Z}

Author(s):  
Amanda Burcroff
2016 ◽  
Vol 59 (3) ◽  
pp. 652-660
Author(s):  
Huadong Su

AbstractThe unitary Cayley graph of a ringR, denoted Γ(R), is the simple graph defined on all elements ofR, and where two verticesxandyare adjacent if and only ifx−yis a unit inR. The largest distance between all pairs of vertices of a graphGis called the diameter ofGand is denoted by diam(G). It is proved that for each integern≥ 1, there exists a ringRsuch that diam(Γ(R)) =n. We also show that diam(Γ(R)) ∊ {1, 2, 3,∞} for a ringRwithR/J(R) self-injective and classify all those rings with diam(Γ(R)) = 1, 2, 3, and ∞, respectively.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/262 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
H. N. Ramaswamy ◽  
C. R. Veena

In this note we obtain the energy of unitary Cayley graph $X_{n}$ which extends a result of R. Balakrishnan for power of a prime and also determine when they are hyperenergetic. We also prove that ${E(X_{n})\over 2(n-1)}\geq{2^{k}\over 4k}$, where $k$ is the number of distinct prime divisors of $n$. Thus the ratio ${E(X_{n})\over 2(n-1)}$, measuring the degree of hyperenergeticity of $X_{n}$, grows exponentially with $k$.


10.37236/206 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Reza Akhtar ◽  
Megan Boggess ◽  
Tiffany Jackson-Henderson ◽  
Isidora Jiménez ◽  
Rachel Karpman ◽  
...  

We study the unitary Cayley graph associated to an arbitrary finite ring, determining precisely its diameter, girth, eigenvalues, vertex and edge connectivity, and vertex and edge chromatic number. We also compute its automorphism group, settling a question of Klotz and Sander. In addition, we classify all planar graphs and perfect graphs within this class.


2021 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Reza Jahani-Nezhad ◽  
Ali Bahrami

Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), the unit graph and the unitary Cayley graph of \({E}_{n}\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_{n})\) and \(G_{E_{n}}\) are Hamiltonian.


2013 ◽  
Vol 14 (04) ◽  
pp. 1350020 ◽  
Author(s):  
DEEPA SINHA ◽  
AYUSHI DHAMA

A Signed graph (or sigraph in short) is an ordered pair S = (G, σ), where G is a graph G = (V, E) and σ : E → {+, −} is a function from the edge set E of G into the set {+, −}. For a positive integer n > 1, the unitary Cayley graph Xnis the graph whose vertex set is Zn, the integers modulo n and if Undenotes set of all units of the ring Zn, then two vertices a, b are adjacent if and only if a − b ∈ Un. In this paper, we have obtained a characterization of balanced and clusterable unitary Cayley ring sigraph [Formula: see text]. Further, we have established a characterization of canonically consistent unitary Cayley ring sigraph [Formula: see text], where n has at most two distinct odd primes factors. Also sign-compatibility has been worked out for the same.


2014 ◽  
Vol 34 (4) ◽  
pp. 707 ◽  
Author(s):  
Chandrashekar Adiga ◽  
E. Sampathkumar ◽  
M.A. Sriraj

10.37236/478 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Andrew Droll

The unitary Cayley graph on $n$ vertices, $X_n$, has vertex set ${\Bbb Z}/{n\Bbb Z}$, and two vertices $a$ and $b$ are connected by an edge if and only if they differ by a multiplicative unit modulo $n$, i.e. ${\rm gcd}(a-b,n) = 1$. A $k$-regular graph $X$ is Ramanujan if and only if $\lambda(X) \leq 2\sqrt{k-1}$ where $\lambda(X)$ is the second largest absolute value of the eigenvalues of the adjacency matrix of $X$. We obtain a complete characterization of the cases in which the unitary Cayley graph $X_n$ is a Ramanujan graph.


10.37236/716 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Deepa Sinha ◽  
Pravin Garg

A $signed graph$ (or $sigraph$ in short) is an ordered pair $S = (S^u, \sigma)$, where $S^u$ is a graph $G = (V, E)$ and $\sigma : E\rightarrow \{+,-\}$ is a function from the edge set $E$ of $S^u$ into the set $\{+, -\}$. For a positive integer $n > 1$, the unitary Cayley graph $X_n$ is the graph whose vertex set is $Z_n$, the integers modulo $n$ and if $U_n$ denotes set of all units of the ring $Z_n$, then two vertices $a, b$ are adjacent if and only if $a-b \in U_n$. For a positive integer $n > 1$, the unitary Cayley sigraph $\mathcal{S}_n = (\mathcal{S}^u_n, \sigma)$ is defined as the sigraph, where $\mathcal{S}^u_n$ is the unitary Cayley graph and for an edge $ab$ of $\mathcal{S}_n$, $$\sigma(ab) = \begin{cases} + & \text{if } a \in U_n \text{ or } b \in U_n,\\ - & \text{otherwise.} \end{cases}$$ In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary Cayley sigraphs $\mathcal{S}_n$, where $n$ has at most two distinct odd prime factors.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350152 ◽  
Author(s):  
YOTSANAN MEEMARK ◽  
BORWORN SUNTORNPOCH

Let R be a finite commutative ring with identity 1. The unitary Cayley graph of R, denoted by GR, is the graph whose vertex set is R and the edge set {{a, b} : a, b ∈ R and a - b ∈ R×}, where R× is the group of units of R. We define the unitary Cayley signed graph (or unitary Cayley sigraph in short) to be an ordered pair 𝒮R = (GR, σ), where GR is the unitary Cayley graph over R with signature σ : E(GR) → {1, -1} given by [Formula: see text] In this paper, we give a criterion on R for SR to be balanced (every cycle in 𝒮R is positive) and a criterion for its line graph L(𝒮R) to be balanced. We characterize all finite commutative rings with the property that the marked sigraph 𝒮R,μ is canonically consistent. Moreover, we give a characterization of all finite commutative rings where 𝒮R, η(𝒮R) and L(𝒮R) are hyperenergetic balanced.


Sign in / Sign up

Export Citation Format

Share Document