On the Diameter of Unitary Cayley Graphs of Rings

2016 ◽  
Vol 59 (3) ◽  
pp. 652-660
Author(s):  
Huadong Su

AbstractThe unitary Cayley graph of a ringR, denoted Γ(R), is the simple graph defined on all elements ofR, and where two verticesxandyare adjacent if and only ifx−yis a unit inR. The largest distance between all pairs of vertices of a graphGis called the diameter ofGand is denoted by diam(G). It is proved that for each integern≥ 1, there exists a ringRsuch that diam(Γ(R)) =n. We also show that diam(Γ(R)) ∊ {1, 2, 3,∞} for a ringRwithR/J(R) self-injective and classify all those rings with diam(Γ(R)) = 1, 2, 3, and ∞, respectively.

2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/262 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
H. N. Ramaswamy ◽  
C. R. Veena

In this note we obtain the energy of unitary Cayley graph $X_{n}$ which extends a result of R. Balakrishnan for power of a prime and also determine when they are hyperenergetic. We also prove that ${E(X_{n})\over 2(n-1)}\geq{2^{k}\over 4k}$, where $k$ is the number of distinct prime divisors of $n$. Thus the ratio ${E(X_{n})\over 2(n-1)}$, measuring the degree of hyperenergeticity of $X_{n}$, grows exponentially with $k$.


2021 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Reza Jahani-Nezhad ◽  
Ali Bahrami

Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), the unit graph and the unitary Cayley graph of \({E}_{n}\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_{n})\) and \(G_{E_{n}}\) are Hamiltonian.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Nabilah Abughazalah ◽  
Naveed Yaqoob ◽  
Asif Bashir

The purpose of this paper is the study of simple graphs that are generalized Cayley graphs over LA-polygroups GCLAP − graphs . In this regard, we construct two new extensions for building LA-polygroups. Then, we define Cayley graph over LA-group and GCLAP-graph. Further, we investigate a few properties of them to show that each simple graph of order three, four, and five (except cycle graph of order five which may or may not be a GCLAP-graph) is a GCLAP-graph and then we prove this result.


Filomat ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 2079-2086
Author(s):  
Milan Basic ◽  
Aleksandar Ilic

The unitary Cayley graph Xn has the vertex set Zn = {0,1,2,..., n-1} and vertices a and b are adjacent, if and only if gcd(a-b,n) = 1. In this paper, we present some properties of the clique, independence and distance polynomials of the unitary Cayley graphs and generalize some of the results from [W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), #R45]. In addition, using some properties of Laplacian polynomial we determine the number of minimal spanning trees of any unitary Cayley graph.


Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Milan Basic

Classes of circulant graphs play an important role in modeling interconnection networks in parallel and distributed computing. They also find applications in modeling quantum spin networks supporting the perfect state transfer. It has been noticed that unitary Cayley graphs as a class of circulant graphs possess many good properties such as small diameter, mirror symmetry, recursive structure, regularity, etc. and therefore can serve as a model for efficient interconnection networks. In this paper we go a step further and analyze some other characteristics of unitary Cayley graphs important for the modeling of a good interconnection network. We show that all unitary Cayley graphs are hamiltonian. More precisely, every unitary Cayley graph is hamiltonian-laceable (up to one exception for X6) if it is bipartite, and hamiltonianconnected if it is not. We prove this by presenting an explicit construction of hamiltonian paths on Xnm using the hamiltonian paths on Xn and Xm for gcd(n,m) = 1. Moreover, we also prove that every unitary Cayley graph is bipancyclic and every nonbipartite unitary Cayley graph is pancyclic.


10.37236/963 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.


2018 ◽  
Vol 7 (3) ◽  
pp. 1243 ◽  
Author(s):  
Roshan Philipose ◽  
Sarasija P B

In this paper, we determine the Gutman Index and Harary Index of Unitary Cayley Graphs. The Unitary Cayley Graph Xn is the graph with vertex set  V(Xn) ={u|u∈ Zn} and edge set {uv|gcd(u−v, n) = 1 and u, v ∈ Zn }, where Zn ={0,1,...,n−1}.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


Sign in / Sign up

Export Citation Format

Share Document