scholarly journals On the Unitary Cayley Signed Graphs

10.37236/716 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Deepa Sinha ◽  
Pravin Garg

A $signed graph$ (or $sigraph$ in short) is an ordered pair $S = (S^u, \sigma)$, where $S^u$ is a graph $G = (V, E)$ and $\sigma : E\rightarrow \{+,-\}$ is a function from the edge set $E$ of $S^u$ into the set $\{+, -\}$. For a positive integer $n > 1$, the unitary Cayley graph $X_n$ is the graph whose vertex set is $Z_n$, the integers modulo $n$ and if $U_n$ denotes set of all units of the ring $Z_n$, then two vertices $a, b$ are adjacent if and only if $a-b \in U_n$. For a positive integer $n > 1$, the unitary Cayley sigraph $\mathcal{S}_n = (\mathcal{S}^u_n, \sigma)$ is defined as the sigraph, where $\mathcal{S}^u_n$ is the unitary Cayley graph and for an edge $ab$ of $\mathcal{S}_n$, $$\sigma(ab) = \begin{cases} + & \text{if } a \in U_n \text{ or } b \in U_n,\\ - & \text{otherwise.} \end{cases}$$ In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary Cayley sigraphs $\mathcal{S}_n$, where $n$ has at most two distinct odd prime factors.

2013 ◽  
Vol 14 (04) ◽  
pp. 1350020 ◽  
Author(s):  
DEEPA SINHA ◽  
AYUSHI DHAMA

A Signed graph (or sigraph in short) is an ordered pair S = (G, σ), where G is a graph G = (V, E) and σ : E → {+, −} is a function from the edge set E of G into the set {+, −}. For a positive integer n > 1, the unitary Cayley graph Xnis the graph whose vertex set is Zn, the integers modulo n and if Undenotes set of all units of the ring Zn, then two vertices a, b are adjacent if and only if a − b ∈ Un. In this paper, we have obtained a characterization of balanced and clusterable unitary Cayley ring sigraph [Formula: see text]. Further, we have established a characterization of canonically consistent unitary Cayley ring sigraph [Formula: see text], where n has at most two distinct odd primes factors. Also sign-compatibility has been worked out for the same.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350152 ◽  
Author(s):  
YOTSANAN MEEMARK ◽  
BORWORN SUNTORNPOCH

Let R be a finite commutative ring with identity 1. The unitary Cayley graph of R, denoted by GR, is the graph whose vertex set is R and the edge set {{a, b} : a, b ∈ R and a - b ∈ R×}, where R× is the group of units of R. We define the unitary Cayley signed graph (or unitary Cayley sigraph in short) to be an ordered pair 𝒮R = (GR, σ), where GR is the unitary Cayley graph over R with signature σ : E(GR) → {1, -1} given by [Formula: see text] In this paper, we give a criterion on R for SR to be balanced (every cycle in 𝒮R is positive) and a criterion for its line graph L(𝒮R) to be balanced. We characterize all finite commutative rings with the property that the marked sigraph 𝒮R,μ is canonically consistent. Moreover, we give a characterization of all finite commutative rings where 𝒮R, η(𝒮R) and L(𝒮R) are hyperenergetic balanced.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/478 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Andrew Droll

The unitary Cayley graph on $n$ vertices, $X_n$, has vertex set ${\Bbb Z}/{n\Bbb Z}$, and two vertices $a$ and $b$ are connected by an edge if and only if they differ by a multiplicative unit modulo $n$, i.e. ${\rm gcd}(a-b,n) = 1$. A $k$-regular graph $X$ is Ramanujan if and only if $\lambda(X) \leq 2\sqrt{k-1}$ where $\lambda(X)$ is the second largest absolute value of the eigenvalues of the adjacency matrix of $X$. We obtain a complete characterization of the cases in which the unitary Cayley graph $X_n$ is a Ramanujan graph.


Author(s):  
R. Rajendra ◽  
P. S. K. Redy

The Tosha-degree of an edge $\alpha $ in a graph $\Gamma$ without multiple edges, denoted by $T(\alpha)$, is the number of edges adjacent to $\alpha$ in $\Gamma$, with self-loops counted twice. A signed graph (marked graph) is an ordered pair $\Sigma=(\Gamma,\sigma)$ ($\Sigma =(\Gamma, \mu)$), where $\Gamma=(V,E)$ is a graph called the underlying graph of $\Sigma$ and $\sigma : E \rightarrow \{+,-\}$ ($\mu : V \rightarrow \{+,-\}$) is a function. In this paper, we define the Tosha-degree equivalence signed graph of a given signed graph and offer a switching equivalence characterization of signed graphs that are switching equivalent to Tosha-degree equivalence signed graphs and $ k^{th}$ iterated Tosha-degree equivalence signed graphs. It is shown that for any signed graph $\Sigma$, its Tosha-degree equivalence signed graph $T(\Sigma)$ is balanced and we offer a structural characterization of Tosha-degree equivalence signed graphs


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Deepa Sinha ◽  
Deepakshi Sharma

A signed graph is a simple graph where each edge receives a sign positive or negative. Such graphs are mainly used in social sciences where individuals represent vertices friendly relation between them as a positive edge and enmity as a negative edge. In signed graphs, we define these relationships (edges) as of friendship (“+” edge) or hostility (“-” edge). A 2-path product signed graph S#^S of a signed graph S is defined as follows: the vertex set is the same as S and two vertices are adjacent if and only if there exists a path of length two between them in S. The sign of an edge is the product of marks of vertices in S where the mark of vertex u in S is the product of signs of all edges incident to the vertex. In this paper, we give a characterization of 2-path product signed graphs. Also, some other properties such as sign-compatibility and canonically-sign-compatibility of 2-path product signed graphs are discussed along with isomorphism and switching equivalence of this signed graph with 2-path signed graph.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Artur Szymański ◽  
Adam Pawel Wojda

Graphs and Algorithms International audience A k-uniform hypergraph H = ( V; E) is said to be self-complementary whenever it is isomorphic with its complement (H) over bar = ( V; ((V)(k)) - E). Every permutation sigma of the set V such that sigma(e) is an edge of (H) over bar if and only if e is an element of E is called self-complementing. 2-self-comlementary hypergraphs are exactly self complementary graphs introduced independently by Ringel ( 1963) and Sachs ( 1962). <br> For any positive integer n we denote by lambda(n) the unique integer such that n = 2(lambda(n)) c, where c is odd. <br> In the paper we prove that a permutation sigma of [1, n] with orbits O-1,..., O-m O m is a self-complementing permutation of a k-uniform hypergraph of order n if and only if there is an integer l >= 0 such that k = a2(l) + s, a is odd, 0 <= s <= 2(l) and the following two conditions hold: <br> (i)n = b2(l+1) + r,r is an element of {0,..., 2(l) - 1 + s}, and <br> (ii) Sigma(i:lambda(vertical bar Oi vertical bar)<= l) vertical bar O-i vertical bar <= r. <br> For k = 2 this result is the very well known characterization of self-complementing permutation of graphs given by Ringel and Sachs.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2283-2294 ◽  
Author(s):  
Mohammad Iranmanesh ◽  
Mahboubeh Saheli

A signed graph consists of a (simple) graph G=(V,E) together with a function ? : E ? {+,-} called signature. Matrices can be associated to signed graphs and the question whether a signed graph is determined by the set of its eigenvalues has gathered the attention of several researchers. In this paper we study the spectral determination with respect to the Laplacian spectrum of signed ?-graphs. After computing some spectral invariants and obtain some constraints on the cospectral mates, we obtain some non isomorphic signed graphs cospectral to signed ?-graphs and we study the spectral characterization of the signed ?-graphs containing a triangle.


Sign in / Sign up

Export Citation Format

Share Document