scholarly journals Peer Review #2 of "A study of soil seed banks across one complete chronosequence of secondary succession in a karst landscape (v0.1)"

Author(s):  
M Rago
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10226
Author(s):  
Xiaole He ◽  
Li Yuan ◽  
Zhen Hong Wang ◽  
Zizong Zhou ◽  
Li Wan

Anthropogenic disturbance and distinctive geochemistry have resulted in rocky desertification in many karst regions of the world. Seed banks are crucial to vegetation regeneration in degraded karst ecosystems characterized by a discontinuous distribution of soil and seasonal drought stress. However, the dynamics of seed banks across one complete series of secondary succession and the underlying mechanisms remain unclear. We selected eight typical stages during secondary succession, conducted aboveground vegetation survey and collected 960 soil samples in the Guiyang karst landscape of China. Seed density, species richness and plant life forms in seed banks were determined via the germination method. The results indicated that the seed density in seed banks before and after field seed germination was significantly different among most succession stages. Community succession had impacts on the seed density of seed banks before and after field seed germination. Seed density ranged from 1,042 seedlings.m−2 in evergreen broadleaf forests to 3,755 seedlings.m−2 in the herb community, which was a relatively high density. The seed density and similar species composition between the seed banks and vegetation declined with succession from early to later stages. Species richness in seed banks was highest in middle succession stages and increased with increasing species richness of aboveground vegetation. The species richness of the five life forms in the seed banks showed different variations across these succession stages. The conservation of diverse aboveground vegetation can maintain the diversity of seed banks for restoration.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.


2002 ◽  
Vol 39 (2) ◽  
pp. 279-293 ◽  
Author(s):  
R.S. Smith ◽  
R.S. Shiel ◽  
D. Millward ◽  
P. Corkhill ◽  
R.A. Sanderson

Sign in / Sign up

Export Citation Format

Share Document