scholarly journals Peer Review #1 of "Feeding behaviour in a ‘basal’ tortoise provides insights on the transitional feeding mode at the dawn of modern land turtle evolution (v0.2)"

2007 ◽  
Vol 3 (3) ◽  
pp. 340-343 ◽  
Author(s):  
David Giron ◽  
Wilfried Kaiser ◽  
Nadine Imbault ◽  
Jérôme Casas

A large number of hypotheses have been proposed to explain the adaptive significance and evolution of the endophagous-feeding mode, nutritional benefits being considered to be one of the main advantages. Leaf-mining insects should feed on most nutritional tissues and avoid tissues with high structural and/or biochemical plant defences. This selective feeding behaviour could furthermore be reinforced by manipulating the plant physiology, as suggested by the autumnal formation of ‘green islands’ around mining caterpillars in yellow leaves. The question we address here is how such metabolic manipulation occurs and what the nutritional consequences for the insect are. We report a large accumulation of cytokinins in the mined tissues which is responsible for the preservation of functional nutrient-rich green tissues at a time when leaves are otherwise turning yellow. The analogy with other plant manipulating organisms, in particular galling insects, is striking.


2017 ◽  
Author(s):  
Robert Boessenecker ◽  
Danielle Fraser ◽  
Morgan Churchill ◽  
Jonathan Geisler

Toothed whales (Odontoceti) are adapted for catching prey underwater and possess some of the most derived feeding specializations of all mammals, including the loss of milk teeth (monophyodonty), high tooth count (polydonty), and the loss of discrete tooth classes (homodonty). Many extant odontocetes possess some combination of short, broad rostra, reduced tooth counts, fleshy lips, and enlarged hyoid bones - all adaptations for suction feeding upon fish and squid. We report a new fossil odontocete from the Oligocene (~30 Ma) of South Carolina (Inermorostrum xenops, gen. et sp. nov.) that possesses adaptations for suction feeding: toothlessness and a shortened rostrum (brevirostry). Enlarged foramina on the rostrum suggest the presence of enlarged lips or perhaps vibrissae. Phylogenetic analysis firmly places Inermorostrum within the Xenorophidae, an early diverging odontocete clade typified by long-snouted, heterodont dolphins. Inermorostrum is the earliest obligate suction feeder within the Odontoceti, a feeding mode that independently evolved several times within the clade. Analysis of macroevolutionary trends in rostral shape indicate stabilizing selection around an optimum rostral shape over the course of odontocete evolution, and a post-Eocene explosion in feeding morphology, heralding the diversity of feeding behaviour amongst modern Odontoceti.


2015 ◽  
Author(s):  
Nikolay Natchev ◽  
Nikolay Tzankov ◽  
Ingmar Werneburg ◽  
Egon Heiss

Almost all extant land turtles are highly associated with terrestrial habitats and the few tortoises with high affinity to aquatic environment are found within the genus Manouria. Manouria belongs to a clade which forms the sister taxon to all remaining tortoises and is suitable to be used as a model for studying evolutionary transitions from water to land within modern turtles. We analysed the feeding behaviour of M. emys and due to its phylogenetic position, we hypothesise that the species might have retained some ancestral characteristics associated to aquatic lifestyle. We tested whether M. emys is able to feed both in aquatic and terrestrial environments as mud turtles do. In fact, M. emys repetitively tried to reach submerged food items in water, but always failed to grasp them and no suction feeding mechanism was applied. When feeding on land, M. emys showed another peculiar behaviour; it grasped food items by its jaws – a behaviour typical for aquatic or semiaquatic turtles – and not by the tongue as in the typical feeding mode in all tortoises studied so far. In M. emys, the hyolingual complex remained retracted during all food uptake sequences, but the food transport was entirely lingual based. The kinematical profile significantly differed from those described for other tortoises and from those proposed from the general models on the function of the feeding systems in lower tetrapods. We conclude that the feeding behaviour of M. emys might reflect a remnant of the primordial condition expected in the aquatic ancestor of tortoises.


2015 ◽  
Author(s):  
Nikolay Natchev ◽  
Nikolay Tzankov ◽  
Ingmar Werneburg ◽  
Egon Heiss

Almost all extant land turtles are highly associated with terrestrial habitats and the few tortoises with high affinity to aquatic environment are found within the genus Manouria. Manouria belongs to a clade which forms the sister taxon to all remaining tortoises and is suitable to be used as a model for studying evolutionary transitions from water to land within modern turtles. We analysed the feeding behaviour of M. emys and due to its phylogenetic position, we hypothesise that the species might have retained some ancestral characteristics associated to aquatic lifestyle. We tested whether M. emys is able to feed both in aquatic and terrestrial environments as mud turtles do. In fact, M. emys repetitively tried to reach submerged food items in water, but always failed to grasp them and no suction feeding mechanism was applied. When feeding on land, M. emys showed another peculiar behaviour; it grasped food items by its jaws – a behaviour typical for aquatic or semiaquatic turtles – and not by the tongue as in the typical feeding mode in all tortoises studied so far. In M. emys, the hyolingual complex remained retracted during all food uptake sequences, but the food transport was entirely lingual based. The kinematical profile significantly differed from those described for other tortoises and from those proposed from the general models on the function of the feeding systems in lower tetrapods. We conclude that the feeding behaviour of M. emys might reflect a remnant of the primordial condition expected in the aquatic ancestor of tortoises.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170531 ◽  
Author(s):  
Robert W. Boessenecker ◽  
Danielle Fraser ◽  
Morgan Churchill ◽  
Jonathan H. Geisler

Toothed whales (Odontoceti) are adapted for catching prey underwater and possess some of the most derived feeding specializations of all mammals, including the loss of milk teeth (monophyodonty), high tooth count (polydonty), and the loss of discrete tooth classes (homodonty). Many extant odontocetes possess some combination of short, broad rostra, reduced tooth counts, fleshy lips, and enlarged hyoid bones—all adaptations for suction feeding upon fishes and squid. We report a new fossil odontocete from the Oligocene (approx. 30 Ma) of South Carolina ( Inermorostrum xenops , gen. et sp. nov.) that possesses adaptations for suction feeding: toothlessness and a shortened rostrum (brevirostry). Enlarged foramina on the rostrum suggest the presence of enlarged lips or perhaps vibrissae. Phylogenetic analysis firmly places Inermorostrum within the Xenorophidae, an early diverging odontocete clade typified by long-snouted, heterodont dolphins. Inermorostrum is the earliest obligate suction feeder within the Odontoceti, a feeding mode that independently evolved several times within the clade. Analysis of macroevolutionary trends in rostral shape indicate stabilizing selection around an optimum rostral shape over the course of odontocete evolution, and a post-Eocene explosion in feeding morphology, heralding the diversity of feeding behaviour among modern Odontoceti.


Sign in / Sign up

Export Citation Format

Share Document