terrestrial environments
Recently Published Documents


TOTAL DOCUMENTS

675
(FIVE YEARS 281)

H-INDEX

49
(FIVE YEARS 10)

Author(s):  
Francesca Bandini ◽  
Eren Taskin ◽  
Gabriele Bellotti ◽  
Filippo Vaccari ◽  
Chiara Misci ◽  
...  

AbstractPlastics fragmentation into smaller debris, namely, micro- and nano-plastics (MPs and NPs), is a matter of global concern because of their wide distribution in terrestrial and marine environments. The latest research has focused mainly on aquatic ecosystems, and fragmentation of bioplastics into micro- and nano-particles (MBPs and NBPs) is not considered. The distribution, concentration, fate and major source of MPs, NPS, MBPs and NBPs in agroecosystems still need to be understood. The use of composts and sewage sludge from the organic fraction of municipal solid waste (OFMSW) treatment plants as soil amendments is likely to represent a major input of these debris. The present review provides insights into the current evidence of pollution from micro- and nano-particles of both fossil- and bio-origin in the OFMSW treatment, and aims at evaluating if the recycling of organic waste and its application as a soil fertilizer outweigh the risk of pollution in terrestrial environments. Huge unpredictability exists due to the limited numbers of data on their quantification in each source of possible solution. Indeed, the major hurdles arise from the difficult to quantify the micro-, especially the nano-, particles and subsequently assess the concentrations in the environments, as well as bioaccumulation risks, and toxic effects on organisms. Graphical Abstract


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
C. A. Aguilar-Trigueros ◽  
L. Boddy ◽  
M. C. Rillig ◽  
M. D. Fricker

AbstractColonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative ‘phalanx’ and ‘guerilla’ descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.


2021 ◽  
Vol 9 (2) ◽  
pp. 43-47
Author(s):  
I. Lawal

Nitrogen is a critical component of biological systems and typically serves as a constraint on production in both aquatic and terrestrial environments, although its shortage has been compensated for through the process of biological nitrogen fixation. Nitrogen fixation is a critical microbial activity that utilises nitrogenase enzymes to convert dinitrogen (N2) gas to ammonia (NH3). It is carried out by a diverse spectrum of bacteria known as nitrogen fixing bacteria. These include free-living bacteria such as Azotobacter, Bacillus, Beijerickia, and Clostridium, associative bacteria such as Azospirillum, Enterobacter, and Pseudomonas, and bacteria that form symbiotic associations with legumes such as Rhizobium and actinorrhizal plants such as Frankia. These bacteria contribute significantly to plant growth by producing phytohormones (such as auxins, cytokinins, gibberelins, and indole acetic acid), reducing the incidence of plant diseases through the production of siderophores and cell wall degrading enzymes, and increasing phosphorus nutrition via phosphate solubilization. Additionally, they remove heavy metal ions from solutions through a process called biosorption, which is a feasible, natural, environmentally benign, and economically viable technique of remediating heavy metal-contaminated environments.


2021 ◽  
Vol 66 (2) ◽  
pp. 201-210
Author(s):  
A. Elizabeth Arnold ◽  
Dustin Sandberg

The widespread aquatic plant Persicaria amphibia (water smartweed, Polygonaceae) occurs in both flooded aquatic habitats and moist terrestrial environments. Its physiological versatility and wide geographic range highlight its resilience to stress and make the species intriguing for the study of fungal endophytes. Endophytes occur within living plant tissues and are known from diverse aquatic, marine, and terrestrial plants, where they often mitigate plant responses to stress. As part of a study evaluating endophyte communities associated with aquatic plants in lentic waters of Arizona, USA, we isolated a distinctive clade of endophytes from healthy, living roots of seasonally inundated P. amphibia, which we describe here on the basis of morphology and evidence from four loci as new species Clohesyomyces symbioticus (Lindgomycetaceae, Pleosporales, Dothideomycetes, Ascomycota). Clohesyomyces has long been considered a monotypic genus comprising the saprobic species C. aquaticus, presently known from submerged wood in freshwater systems in Asia and Australia. Description of Clohesyomyces symbioticus highlights the occurrence of endophytism in this genus and expands its geographic scope to the western hemisphere.


2021 ◽  
Vol 7 (12) ◽  
pp. 1102
Author(s):  
Viridiana Magaña-Dueñas ◽  
José Francisco Cano-Lira ◽  
Alberto Miguel Stchigel

The Dothideomycetes are a class of cosmopolitan fungi that are present principally in terrestrial environments, but which have also been found in freshwater and marine habitats. In the present study, more than a hundred samples of plant debris were collected from various freshwater locations in Spain. Its incubation in wet chambers allowed us to detect and to isolate in pure culture numerous fungi producing asexual reproductive fruiting bodies (conidiomata). Thanks to a morphological comparison and to a phylogenetic analysis that combined the internal transcribed spacer (ITS) region of the nrDNA with fragments of the RNA polymerase II subunit 2 (rpb2), beta tubulin (tub2), and the translation elongation factor 1-alpha (tef-1) genes, six of those strains were identified as new species to science. Three belong to the family Didymellaceae: Didymella brevipilosa, Heterophoma polypusiformis and Paraboeremia clausa; and three belong to the family Phaeosphaeriaceae:Paraphoma aquatica, Phaeosphaeria fructigena and Xenophoma microspora. The finding of these new taxa significantly increases the number of the coelomycetous fungi that have been described from freshwater habitats.


2021 ◽  
pp. 1-17
Author(s):  
Viktoriia Holovan ◽  
Olena Andriichuk ◽  
Irena Budzanivska ◽  
Pavlina Zelena ◽  
Tetiana Kondratiuk ◽  
...  

Abstract Virus diversity in Antarctic biotopes remains understudied. Here, we describe bacteriophages isolated from terrestrial environments, provide data on their natural bacterial hosts and study phage-host systems. Six bacterial isolates (FCKU 539, FCKU 533, FCKU 534, FCKU 538, FCKU 542 and FCKU 540) were recovered and characterized. Isolated bacteria belonged to Pseudomonas genus (Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas putida) with optimal cultivation temperatures of 16–28°C. These bacteria and previously described Bacillus subtilis FCKU 537 were used for analysing virus-host interactions. Six lytic phages were isolated and named P. fluorescens Antarctic virus 1 (PFAV1), P. fluorescens Antarctic virus 2 (PFAV2), P. fluorescens Antarctic virus 3 (PFAV3), P. putida Antarctic virus 4 (PPAV4), Pseudomonas sp. Antarctic virus 5 (PSAV5) and B. subtilis Antarctic virus 6 (BSAV6) in relation to their natural hosts. According to electron microscopy data, these phages belonged to Caudovirales order. Cross-inoculation demonstrated high specificity of all Antarctic phages, which infected only their initial hosts at moderate temperatures. PFAV2 and PFAV3 phages also infected laboratory Pseudomonas savastanoi and P. fluorescens isolates. This paper adds new data on the occurrence and diversity of viruses and their respective bacterial hosts in soil biotopes of Antarctica.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8117
Author(s):  
Jonathan Kua ◽  
Seng W. Loke ◽  
Chetan Arora ◽  
Niroshinie Fernando ◽  
Chathurika Ranaweera

Recent scientific and technological advancements driven by the Internet of Things (IoT), Machine Learning (ML) and Artificial Intelligence (AI), distributed computing and data communication technologies have opened up a vast range of opportunities in many scientific fields—spanning from fast, reliable and efficient data communication to large-scale cloud/edge computing and intelligent big data analytics. Technological innovations and developments in these areas have also enabled many opportunities in the space industry. The successful Mars landing of NASA’s Perseverance rover on 18 February 2021 represents another giant leap for humankind in space exploration. Emerging research and developments of connectivity and computing technologies in IoT for space/non-terrestrial environments is expected to yield significant benefits in the near future. This survey paper presents a broad overview of the area and provides a look-ahead of the opportunities made possible by IoT and space-based technologies. We first survey the current developments of IoT and space industry, and identify key challenges and opportunities in these areas. We then review the state-of-the-art and discuss future opportunities for IoT developments, deployment and integration to support future endeavors in space exploration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eoin J. O’Gorman ◽  
Irina Chemshirova ◽  
Órla B. McLaughlin ◽  
Rebecca I. A. Stewart

Cross-ecosystem subsidies are important as their recipients often rely on them to supplement in situ resource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.


2021 ◽  
Vol 290 ◽  
pp. 118104
Author(s):  
Noreen Khalid ◽  
Muhammad Aqeel ◽  
Ali Noman ◽  
Shujaul Mulk Khan ◽  
Noreen Akhter

2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Anna McGairy ◽  
Toshifumi Komatsu ◽  
Mark Williams ◽  
Thomas H. P. Harvey ◽  
C. Giles Miller ◽  
...  

The fossil record of terrestrialization documents notable shifts in the environmental and physiological tolerances of many animal and plant groups. However, for certain significant components of modern freshwater and terrestrial environments, the transition out of marine settings remains largely unconstrained. Ostracod crustaceans occupy an exceptional range of modern aquatic environments and are invaluable palaeoenvironmental indicators in the fossil record. However, pre-Carboniferous records of supposed non-marine and marginal marine ostracods are sparse, and the timing of their marine to non-marine transition has proven elusive. Here, we reassess the early environmental history of ostracods in light of new assemblages from the late Silurian of Vietnam. Two, low diversity but distinct ostracod assemblages are associated with estuarine deposits. This occurrence is consistent with previous incidental reports of ostracods occupying marginal and brackish settings through the late Silurian and Devonian. Therefore, ostracods were pioneering the occupation of marginal marine and estuarine settings 60 Myr before the Carboniferous and they were a component of the early phase of transition from marine to non-marine environments.


Sign in / Sign up

Export Citation Format

Share Document