scholarly journals The material-weight illusion is a Bayes-optimal percept under competing density priors

Author(s):  
Megan A K Peters ◽  
Ling-Qi Zhang ◽  
Ladan Shams

The material-weight illusion (MWI) is one example in a class of weight perception illusions that seem to defy principled explanation. In this illusion, when an observer lifts two objects of the same size and mass, but that appear to be made of different materials, the denser-looking (e.g., metal-look) object is perceived as lighter than the less-dense-looking (e.g., polystyrene-look) object. Like the size-weight illusion (SWI), this perceptual illusion occurs in the opposite direction of predictions from an optimal Bayesian inference process, which predicts that the denser-looking object should be perceived as heavier, not lighter. The presence of this class of illusions challenges the often-tacit assumption that Bayesian inference holds universal explanatory power to describe human perception across (nearly) all domains: If an entire class of perceptual illusions cannot be captured by the Bayesian framework, how could it be argued that human perception truly follows optimal inference? However, we recently showed that the SWI can be explained by an optimal hierarchical Bayesian causal inference process (Peters, Ma & Shams, 2016) in which the observer uses haptic information to arbitrate among competing hypotheses about objects’ possible density relationship. Here we extend the model to demonstrate that it can readily explain the MWI as well. That hierarchical Bayesian inference can explain both illusions strongly suggests that even puzzling percepts arise from optimal inference processes.

2018 ◽  
Author(s):  
Megan A K Peters ◽  
Ling-Qi Zhang ◽  
Ladan Shams

The material-weight illusion (MWI) is one example in a class of weight perception illusions that seem to defy principled explanation. In this illusion, when an observer lifts two objects of the same size and mass, but that appear to be made of different materials, the denser-looking (e.g., metal-look) object is perceived as lighter than the less-dense-looking (e.g., polystyrene-look) object. Like the size-weight illusion (SWI), this perceptual illusion occurs in the opposite direction of predictions from an optimal Bayesian inference process, which predicts that the denser-looking object should be perceived as heavier, not lighter. The presence of this class of illusions challenges the often-tacit assumption that Bayesian inference holds universal explanatory power to describe human perception across (nearly) all domains: If an entire class of perceptual illusions cannot be captured by the Bayesian framework, how could it be argued that human perception truly follows optimal inference? However, we recently showed that the SWI can be explained by an optimal hierarchical Bayesian causal inference process (Peters, Ma & Shams, 2016) in which the observer uses haptic information to arbitrate among competing hypotheses about objects’ possible density relationship. Here we extend the model to demonstrate that it can readily explain the MWI as well. That hierarchical Bayesian inference can explain both illusions strongly suggests that even puzzling percepts arise from optimal inference processes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5760 ◽  
Author(s):  
Megan A.K. Peters ◽  
Ling-Qi Zhang ◽  
Ladan Shams

The material-weight illusion (MWI) is one example in a class of weight perception illusions that seem to defy principled explanation. In this illusion, when an observer lifts two objects of the same size and mass, but that appear to be made of different materials, the denser-looking (e.g., metal-look) object is perceived as lighter than the less-dense-looking (e.g., polystyrene-look) object. Like the size-weight illusion (SWI), this perceptual illusion occurs in the opposite direction of predictions from an optimal Bayesian inference process, which predicts that the denser-looking object should be perceived as heavier, not lighter. The presence of this class of illusions challenges the often-tacit assumption that Bayesian inference holds universal explanatory power to describe human perception across (nearly) all domains: If an entire class of perceptual illusions cannot be captured by the Bayesian framework, how could it be argued that human perception truly follows optimal inference? However, we recently showed that the SWI can be explained by an optimal hierarchical Bayesian causal inference process (Peters, Ma & Shams, 2016) in which the observer uses haptic information to arbitrate among competing hypotheses about objects’ possible density relationship. Here we extend the model to demonstrate that it can readily explain the MWI as well. That hierarchical Bayesian inference can explain both illusions strongly suggests that even puzzling percepts arise from optimal inference processes.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2124 ◽  
Author(s):  
Megan A.K. Peters ◽  
Wei Ji Ma ◽  
Ladan Shams

When we lift two differently-sized but equally-weighted objects, we expect the larger to be heavier, but the smallerfeelsheavier. However, traditional Bayesian approaches with “larger is heavier” priors predict the smaller object should feellighter; this Size-Weight Illusion (SWI) has thus been labeled “anti-Bayesian” and has stymied psychologists for generations. We propose that previous Bayesian approaches neglect the brain’s inference process about density. In our Bayesian model, objects’ perceived heaviness relationship is based on both their size and inferred density relationship: observers evaluate competing, categorical hypotheses about objects’ relative densities, the inference about which is then used to produce the final estimate of weight. The model can qualitatively and quantitatively reproduce the SWI and explain other researchers’ findings, and also makes a novel prediction, which we confirmed. This same computational mechanism accounts for other multisensory phenomena and illusions; that the SWI follows the same process suggests that competitive-prior Bayesian inference can explain human perception across many domains.


2019 ◽  
Vol 121 (3) ◽  
pp. 996-1010 ◽  
Author(s):  
Vivian C. Paulun ◽  
Gavin Buckingham ◽  
Melvyn A. Goodale ◽  
Roland W. Fleming

The material-weight illusion (MWI) occurs when an object that looks heavy (e.g., stone) and one that looks light (e.g., Styrofoam) have the same mass. When such stimuli are lifted, the heavier-looking object feels lighter than the lighter-looking object, presumably because well-learned priors about the density of different materials are violated. We examined whether a similar illusion occurs when a certain weight distribution is expected (such as the metal end of a hammer being heavier), but weight is uniformly distributed. In experiment 1, participants lifted bipartite objects that appeared to be made of two materials (combinations of stone, Styrofoam, and wood) but were manipulated to have a uniform weight distribution. Most participants experienced an inverted MWI (i.e., the heavier-looking side felt heavier), suggesting an integration of incoming sensory information with density priors. However, a replication of the classic MWI was found when the objects appeared to be uniformly made of just one of the materials ( experiment 2). Both illusions seemed to be independent of the forces used when the objects were lifted. When lifting bipartite objects but asked to judge the weight of the whole object, participants experienced no illusion ( experiment 3). In experiment 4, we investigated weight perception in objects with a nonuniform weight distribution and again found evidence for an integration of prior and sensory information. Taken together, our seemingly contradictory results challenge most theories about the MWI. However, Bayesian integration of competing density priors with the likelihood of incoming sensory information may explain the opposing illusions. NEW & NOTEWORTHY We report a novel weight illusion that contradicts all current explanations of the material-weight illusion: When lifting an object composed of two materials, the heavier-looking side feels heavier, even when the true weight distribution is uniform. The opposite (classic) illusion is found when the same materials are lifted in two separate objects. Identifying the common mechanism underlying both illusions will have implications for perception more generally. A potential candidate is Bayesian inference with competing priors.


2019 ◽  
Vol 15 (6) ◽  
pp. e1007043 ◽  
Author(s):  
Payam Piray ◽  
Amir Dezfouli ◽  
Tom Heskes ◽  
Michael J. Frank ◽  
Nathaniel D. Daw

Sign in / Sign up

Export Citation Format

Share Document