scholarly journals Hilbert-Schmidtness of weighted composition operators and their differences on Hardy spaces

2020 ◽  
Vol 40 (4) ◽  
pp. 495-507
Author(s):  
Ching-on Lo ◽  
Anthony Wai-keung Loh

Let \(u\) and \(\varphi\) be two analytic functions on the unit disk \(\mathbb{D}\) such that \(\varphi(\mathbb{D}) \subset \mathbb{D}\). A weighted composition operator \(uC_{\varphi}\) induced by \(u\) and \(\varphi\) is defined on \(H^2\), the Hardy space of \(\mathbb{D}\), by \(uC_{\varphi}f := u \cdot f \circ \varphi\) for every \(f\) in \(H^2\). We obtain sufficient conditions for Hilbert-Schmidtness of \(uC_{\varphi}\) on \(H^2\) in terms of function-theoretic properties of \(u\) and \(\varphi\). Moreover, we characterize Hilbert-Schmidt difference of two weighted composition operators on \(H^2\).

2019 ◽  
Vol 99 (03) ◽  
pp. 473-484
Author(s):  
CHING-ON LO ◽  
ANTHONY WAI-KEUNG LOH

Let $u$ and $\unicode[STIX]{x1D711}$ be two analytic functions on the unit disc $D$ such that $\unicode[STIX]{x1D711}(D)\subset D$ . A weighted composition operator $uC_{\unicode[STIX]{x1D711}}$ induced by $u$ and $\unicode[STIX]{x1D711}$ is defined by $uC_{\unicode[STIX]{x1D711}}f:=u\cdot f\circ \unicode[STIX]{x1D711}$ for every $f$ in $H^{p}$ , the Hardy space of $D$ . We investigate compactness of $uC_{\unicode[STIX]{x1D711}}$ on $H^{p}$ in terms of function-theoretic properties of $u$ and $\unicode[STIX]{x1D711}$ .


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Sei-Ichiro Ueki ◽  
Luo Luo

We estimate the essential norm of a compact weighted composition operator acting between different Hardy spaces of the unit ball in . Also we will discuss a compact multiplication operator between Hardy spaces.


2021 ◽  
Vol 29 (2) ◽  
pp. 243-250
Author(s):  
HAMID VAEZI ◽  
MOHAMAD NAGHLISAR

In this paper we consider the weighted composition operator uC_{\varphi} from Bloch-type space B^{\alpha} into Bers-type space H_{\beta}^{\infty}, in three cases, \alpha>1, \alpha=1 and \alpha<1. We give the necessary and sufficient conditions for boundedness and compactness of the above operator.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
M. Haji Shaabani ◽  
B. Khani Robati

We obtain a representation for the norm of certain compact weighted composition operator on the Hardy space , whenever and . We also estimate the norm and essential norm of a class of noncompact weighted composition operators under certain conditions on and . Moreover, we characterize the norm and essential norm of such operators in a special case.


1991 ◽  
Vol 33 (3) ◽  
pp. 275-279 ◽  
Author(s):  
James T. Campbell ◽  
Mary Embry-Wardrop ◽  
Richard J. Fleming ◽  
S. K. Narayan

In their paper [1], Campbell and Jamison attempted to give necessary and sufficient conditions for a weighted composition operator on an L2 space to be normal, and to be quasinormal. Those conditions, specifically Theorems I and II of that paper, are not valid (see [2] for precise comments on the other results in that paper). In this paper we present a counterexample to those theorems and state and prove characterizations of quasinormality (Theorem 1 below) and normality (Theorem 2 and Corollary 3 below). We also discuss additional examples and information concerning normal weighted composition operators which contribute to the further understanding of this class.


2013 ◽  
Vol 46 (2) ◽  
Author(s):  
Xiangling Zhu

AbstractThe boundedness and compactness of the weighted composition operator from weighted Hardy spaces to weighted-type spaces are studied in this paper.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Z. Kamali ◽  
K. Hedayatian ◽  
B. Khani Robati

We give sufficient conditions under which a weighted composition operator on a Hilbert space of analytic functions is not weakly supercyclic. Also, we give some necessary and sufficient conditions for hypercyclicity and supercyclicity of weighted composition operators on the space of analytic functions on the open unit disc.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ligang Geng

AbstractLet u be an analytic function in the unit disk $\mathbb{D}$ D and φ be an analytic self-map of $\mathbb{D}$ D . We give characterizations of the symbols u and φ for which the multiplication operator $M_{u}$ M u and the weighted composition operator $M_{u,\varphi }$ M u , φ are isometries of BMOA.


1997 ◽  
Vol 4 (4) ◽  
pp. 373-383
Author(s):  
G. Mirzakarimi ◽  
K. Seddighi

Abstract Let 𝐻(Ω) denote a functional Hilbert space of analytic functions on a domain Ω. Let 𝑤 : Ω → 𝐂 and ϕ : Ω → Ω be such that 𝑤 𝑓 ○ ϕ is in 𝐻(Ω) for every 𝑓 in 𝐻(Ω). The operator 𝑤𝐶 ϕ Given by 𝑓 → 𝑤 𝑓 ○ ϕ is called a weighted composition operator on 𝐻(Ω). In this paper we characterize such operators and those for which (𝑤𝐶 ϕ )* is a composition operator. Compact weighted composition operators on some functional Hilbert spaces are also characterized. We give sufficient conditions for the compactness of such operators on weighted Dirichlet spaces.


2012 ◽  
Vol 64 (6) ◽  
pp. 1329-1340 ◽  
Author(s):  
Kei Ji Izuchi ◽  
Quang Dieu Nguyen ◽  
Shûichi Ohno

Abstract We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and, moreover, be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.


Sign in / Sign up

Export Citation Format

Share Document