scholarly journals Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Kara L McKinley ◽  
Nico Stuurman ◽  
Loic A Royer ◽  
Christoph Schartner ◽  
David Castillo-Azofeifa ◽  
...  

Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.

2018 ◽  
Author(s):  
Kara L McKinley ◽  
Nico Stuurman ◽  
Loic A Royer ◽  
Christoph Schartner ◽  
David Castillo-Azofeifa ◽  
...  

Author(s):  
A.E. Sutherland ◽  
P.G. Calarco ◽  
C.H. Damsky

Cell-extracellular matrix (ECM) interactions mediated by the integrin family of receptors are critical for morphogenesis and may also play a regulatory role in differentiation during early development. We have examined the onset of expression of individual integrin subunit proteins in the early mouse embryo, and their roles in early morphogenetic events. As detected by immunoprecipitation, the α6, αV, β1, and β3 subunits are detected as early as the 4-cell stage, α5 at the hatched blastocyst stage and αl and α3 following blastocyst attachment. We tested the role of these integrins in the attachment and migratory activity of two cell populations of the early mouse embryo: the trophoblast giant cells, which invade the uterine stroma and ultimately contribute to the chorio-allantoic placenta, and the parietal endoderm, which migrates over the inner surface of the trophoblast and ultimately forms Reichert's membrane and the parietal yolk sac. Experiments were done in serum-free medium on substrates coated with laminin (Ln) and fibronectin (Fn). Trophoblast outgrowth occurs on Ln and its E8 fragment (long arm), but not on the E1’ fragment (cross region) (Figs. 1, 2 ). This outgrowth is inhibited by anti-E8, anti-Ln, and by the anti-β1 family antiserum anti-ECMR, but not by anti-αV or the function-perturbing GoH3 antibody that recognizes the α6/β1 integrin, a major Ln (E8) receptor. This suggests that trophoblast outgrowth on Ln or E8 is mediated by a different β1 integrin such as α3/β1. Early stages of trophoblast outgrowth (up to 48 hours) on Fn are inhibited by anti-Fn and by function-perturbing anti-αV antibodies, whereas at later times outgrowth becomes insensitive to anti-αV but remains sensitive to the anti-β1 family antiserum anti-ECMr, indicating that trophoblast cells modulate their interaction with Fn during outgrowth. Trophoblast outgrowth on vitronectin (Vn) is sensitive to anti-αV antibodies throughout the 5-day period examined.


Sign in / Sign up

Export Citation Format

Share Document