early mouse embryo
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 27)

H-INDEX

48
(FIVE YEARS 4)

Development ◽  
2021 ◽  
Author(s):  
Esther Jeong Yoon Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and it is required for proper EPI/PrE patterning. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


2021 ◽  
Author(s):  
Jing Zhao ◽  
Ke Yao ◽  
Hua Yu ◽  
Ling Zhang ◽  
Yuyan Xu ◽  
...  

2021 ◽  
Author(s):  
Esther J.Y. Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo gives rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their inside position to instruct their fate is unknown. Here we show that cells perceive their position through extracellular matrix (ECM) and integrin-mediated adhesion. Provision of ECM to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β 1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for inside positional signalling and it is required for proper sorting of EPI/PrE cells. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


2021 ◽  
Author(s):  
Tessa Dignum ◽  
Barbara Varnum-Finney ◽  
Sanjay Srivatsan ◽  
Stacey Dozono ◽  
Olivia Waltner ◽  
...  

SUMMARYDuring embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSC). Although previous studies have shown that yolk sac-derived erythromyeloid progenitors and HSC emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSC originate from common HE. Here we demonstrate by clonal assays and single cell transcriptomics that rare HE with functional HSC potential in the early murine embryo are distinct from more abundant HE with multilineage hematopoietic potential that fail to generate HSC. Specifically, HSC-competent HE are characterized by expression of CXCR4 surface marker and by higher expression of genes tied to arterial programs regulating HSC dormancy and self-renewal. Together, these findings suggest a revised model of developmental hematopoiesis in which the initial populations of multipotent progenitors and HSC arise independently from HE with distinct phenotypic and transcriptional properties.


Development ◽  
2021 ◽  
Vol 148 (18) ◽  
pp. dev192773
Author(s):  
Chloé Roffay ◽  
Chii J. Chan ◽  
Boris Guirao ◽  
Takashi Hiiragi ◽  
François Graner

ABSTRACTRecognizing the crucial role of mechanical regulation and forces in tissue development and homeostasis has stirred a demand for in situ measurement of forces and stresses. Among emerging techniques, the use of cell geometry to infer cell junction tensions, cell pressures and tissue stress has gained popularity owing to the development of computational analyses. This approach is non-destructive and fast, and statistically validated based on comparisons with other techniques. However, its qualitative and quantitative limitations, in theory as well as in practice, should be examined with care. In this Primer, we summarize the underlying principles and assumptions behind stress inference, discuss its validity criteria and provide guidance to help beginners make the appropriate choice of its variants. We extend our discussion from two-dimensional stress inference to three dimensional, using the early mouse embryo as an example, and list a few possible extensions. We hope to make stress inference more accessible to the scientific community and trigger a broader interest in using this technique to study mechanics in development.


2021 ◽  
Vol 118 (3) ◽  
pp. e2008890118
Author(s):  
Giuliano G. Stirparo ◽  
Agata Kurowski ◽  
Ayaka Yanagida ◽  
Lawrence E. Bates ◽  
Stanley E. Strawbridge ◽  
...  

OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.


Author(s):  
Takashi Ishiuchi ◽  
Shusaku Abe ◽  
Kimiko Inoue ◽  
Wan Kin Au Yeung ◽  
Yuka Miki ◽  
...  

Author(s):  
Samuel Collombet ◽  
Yuvia A. Pérez-Rico ◽  
Katia Ancelin ◽  
Nicolas Servant ◽  
Edith Heard

Author(s):  
Raquel Pérez-Palacios ◽  
Patricia Fauque ◽  
Aurélie Teissandier ◽  
Déborah Bourc’his

Sign in / Sign up

Export Citation Format

Share Document