scholarly journals General Rogue Waves in the Boussinesq Equation

2020 ◽  
Vol 89 (2) ◽  
pp. 024003 ◽  
Author(s):  
Bo Yang ◽  
Jianke Yang
2021 ◽  
pp. 2150380
Author(s):  
Xiu-Rong Guo

Based on the Hirota bilinear form of the generalized (2+1)-dimensional Boussinesq equation, which can be expressed as the shallow water wave mechanism appearing in fluid mechanics, we applied the new polynomial functions to construct the rational solutions and rogue wave-type solutions. Next, the system parameters control on the rational solutions and rogue wave-type solutions were also shown. As a result, we found the following basic facts: (i) these parameters may affect the wave shapes, amplitude, and bright/dark for this considered equation, (ii) the solitary wave interaction rogue waves and triplet rogue wave-type solutions can be viewed on [Formula: see text], [Formula: see text], and [Formula: see text] planes, respectively. Their nonlinear dynamic behaviors were presented by numerical simulation of the 2D- and 3D-plots.


2016 ◽  
Vol 115 (1) ◽  
pp. 10002 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Shou-Fu Tian ◽  
Chun-Yan Qin ◽  
Tian-Tian Zhang

2017 ◽  
Vol 72 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Ji-Guang Rao ◽  
Yao-Bin Liu ◽  
Chao Qian ◽  
Jing-Song He

AbstractThe rational and semirational solutions in the Boussinesq equation are obtained by the Hirota bilinear method and long wave limit. It is shown that the rational solutions contain dark and bright rogue waves, and their typical dynamics are analysed and illustrated. The semirational solutions possess a range of hybrid solutions, and the hybrid of rogue wave and solitons are demonstrated in detail by the three-dimensional figures. Under certain parameter conditions, a new kind of semirational solutions consisted of rogue waves, breathers and solitons is discovered, which describes the dynamics of the rogue waves interacting with the breathers and solitons at the same time.


2019 ◽  
Vol 43 (6) ◽  
pp. 3701-3715 ◽  
Author(s):  
Yunkai Liu ◽  
Biao Li ◽  
Abdul‐Majid Wazwaz

2021 ◽  
Author(s):  
Dipankar Kumar ◽  
Md. Nuruzzaman ◽  
Gour Chandra Paul ◽  
Ashabul Hoque

Abstract The Boussinesq equation (BqE) has been of considerable interest in coastal and ocean engineering models for simulating surface water waves in shallow seas and harbors, tsunami wave propagation, wave over-topping, inundation, and near-shore wave process in which nonlinearity and dispersion effects are taken into consideration. The study deals with the dynamics of localized waves and their interaction solutions to a dimensionally reduced (2 + 1)-dimensional BqE from N-soliton solutions with the use of Hirota’s bilinear method (HBM). Taking the long-wave limit approach in coordination with some constraint parameters in the N-soliton solutions, the localized waves (i.e., soliton, breather, lump, and rogue waves) and their interaction solutions are constructed. The interaction solutions can be obtained among localized waves, such as (i) one breather or one lump from the two solitons, (ii) one stripe and one breather, and one stripe and one lump from the three solitons, and (iii) two stripes and one breather, one lump and one periodic breather, two stripes and one lump, two breathers, and two lumps from the four solitons. It is to be found that all interactions among the solitons are elastic. The energy, phase shift, shape, and propagation direction of these localized waves and their interaction solutions can be influenced and controlled by the involved constraint parameters. The dynamical characteristics of these localized waves and their interaction solutions are demonstrated through some 3D and density graphs. The outcomes achieved in this study can be used to illustrate the wave interaction phenomena in shallow water.


Pramana ◽  
2014 ◽  
Vol 83 (4) ◽  
pp. 473-480 ◽  
Author(s):  
ZHENGDE DAI ◽  
CHUANJIAN WANG ◽  
JUN LIU

Sign in / Sign up

Export Citation Format

Share Document