ocean engineering
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 175)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Jianxing Yu ◽  
Haoda Li ◽  
Yang Yu ◽  
Xin Liu ◽  
Weipeng Xu ◽  
...  

Abstract At present, unbonded flexible pipes (UFPs) are widely used in ocean engineering for oil exploitation. In practice, erosion will lead to premature failure of pipelines. There is a lack of researches on the erosion of interlock carcass of UFPs. As the authority in the field of offshore engineering, DET NORSKE VERITAS(DNV) suggested a way to estimate the erosion rate of pipes, however, it does not study the erosion mechanism of UFPs in detail and the relevant parameters are not specified. This paper modifies erosion prediction of UFPs based on a user defined Fortran subroutine. A series of CFD simulations have been conducted, and three widely used erosion models were used for comparative verification. The effect of geometric shape on erosion rate has been carefully studied. and the effect of velocity, particle size, and concentration are also studied to verify the reliability of the improved model.


2022 ◽  
Vol 244 ◽  
pp. 110423
Author(s):  
Chao Ma ◽  
Chuanming Sheng ◽  
Jijian Lian ◽  
Fang Liu

2022 ◽  
Vol 244 ◽  
pp. 110369
Author(s):  
Xiang-Li Fang ◽  
Andrea Colagrossi ◽  
Ping-Ping Wang ◽  
A-Man Zhang

2022 ◽  
Vol 118 ◽  
pp. 103028
Author(s):  
Abbas Khayyer ◽  
Benedict D. Rogers ◽  
A-Man Zhang

2021 ◽  
Vol 9 (12) ◽  
pp. 1450
Author(s):  
Javier Zamora

The article herein presents a closed-form mathematical equation by which it is possible to estimate the propulsion power demand of ships as a function of the propeller parameters and total Resistance. The validation of the derived model is conducted by use of the Series 60 Model data and of the Korea Research Institute of Ships and Ocean Engineering (KRISO) Very Large Crude-oil Carrier 2 (KVLCC2) data. In all the cases tested, the derived model explained more than 99.9% of the data variability. Furthermore, the paper describes a practical method for quantifying changes in hull and propeller performance and provides an application example.


Author(s):  
Lanre Akinyemi ◽  
Mehmet Şenol ◽  
Emad Az-Zo’bi ◽  
P. Veeresha ◽  
Udoh Akpan

In this paper, we examined four different forms of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili (B-KP)-like equations. In this connection, an accurate computational method based on the Riccati equation called sub-equation method and its Bäcklund transformation is employed. Using this method, numerous exact solutions that do not exist in the literature have been obtained in the form of trigonometric, hyperbolic, and rational. These solutions are of considerable importance in applied sciences, coastal, and ocean engineering, where the B–KP-like equations modeled for some significant physical phenomenon. The graph of the bright and dark solitons is presented in order to demonstrate the influence of different physical parameters on the solutions. All of the findings prove the stability, effectiveness, and accuracy of the proposed method.


2021 ◽  
Vol 9 (12) ◽  
pp. 1404
Author(s):  
Shenyu Xuan ◽  
Chengsheng Zhan ◽  
Zuyuan Liu ◽  
Qiaosheng Zhao ◽  
Wei Guo

In level ice, the maneuvering motion of icebreakers has a major influence on the global ice loads of the hull. This study researched the influences of the drift angle and turning radius on the ice loads of the icebreaker Xue Long through a partial numerical method based on the linear superposition theory of ice loads. First, with reference to the Araon model tests performed by the Korea Research Institute of Ships and Ocean Engineering (KRISO), numerical simulations of Araon’s direct motion were carried out at different speeds, and the average deviation between numerical results and model test results was about 13.8%. Meanwhile, the icebreaking process and modes were analyzed and discussed, compared with a model test and a full-scale ship trial. Next, the maneuvering captive motions of oblique and constant radius were simulated to study the characteristics of ice loads under different drift angles and turning radii. Compared with the maneuvering motion model tests in the ice tank of Tianjin University and the Institute for Ocean Technology of the National Research Council of Canada (NRC/IOT), the numerical results had good agreement with the model test results in terms of the variation trend of ice loads and ice–hull interaction, and the influences of drift angle and turning radius on ice resistance and transverse force, which have a certain reference value for sailing performance research and the design of the hull form of icebreaker ships, are discussed.


Author(s):  
Anca Bleoju ◽  
Eugen Gavan ◽  
Costel Iulian Mocanu ◽  
Daniela-Ioana Tudose

The fore area of the ships in extreme conditions is commonly subjected to external impact pressures such as bottom slamming and bow impact. The phenomenon combined with a poor design can lead to local structural damage (cracks, dents, buckling of plate panels) and malfunction to the installations on-board of the ship. In the present article, a comparison study between different steel material grades is performed for a VLCC fore peak structure subjected to external and internal dynamic pressures under the Harmonized Common Structural Rules for Bulk Carriers and Oil Tankers (H-CSR). Three steel grades generally used in the shipbuilding industry, one normal strength and two higher strength, are subjected for the assessment. The hull structure is built based on the benchmark crude oil carrier KVLCC2 surface developed by KRISO (Korea Research Institute for Ships and Ocean Engineering, and modelled with plate finite elements in FEMAP software. The study targets an optimization process to minimize the steel weight of the structural members by plate elements thickness reduction.


Sign in / Sign up

Export Citation Format

Share Document