scholarly journals A new non-monotonic infeasible simplex-type algorithm for Linear Programming

2020 ◽  
Vol 6 ◽  
pp. e265
Author(s):  
Charalampos P. Triantafyllidis ◽  
Nikolaos Samaras

This paper presents a new simplex-type algorithm for Linear Programming with the following two main characteristics: (i) the algorithm computes basic solutions which are neither primal or dual feasible, nor monotonically improving and (ii) the sequence of these basic solutions is connected with a sequence of monotonically improving interior points to construct a feasible direction at each iteration. We compare the proposed algorithm with the state-of-the-art commercial CPLEX and Gurobi Primal-Simplex optimizers on a collection of 93 well known benchmarks. The results are promising, showing that the new algorithm competes versus the state-of-the-art solvers in the total number of iterations required to converge.

2020 ◽  
Vol 67 ◽  
pp. 607-651
Author(s):  
Margarita Paz Castro ◽  
Chiara Piacentini ◽  
Andre Augusto Cire ◽  
J. Christopher Beck

We investigate the use of relaxed decision diagrams (DDs) for computing admissible heuristics for the cost-optimal delete-free planning (DFP) problem. Our main contributions are the introduction of two novel DD encodings for a DFP task: a multivalued decision diagram that includes the sequencing aspect of the problem and a binary decision diagram representation of its sequential relaxation. We present construction algorithms for each DD that leverage these different perspectives of the DFP task and provide theoretical and empirical analyses of the associated heuristics. We further show that relaxed DDs can be used beyond heuristic computation to extract delete-free plans, find action landmarks, and identify redundant actions. Our empirical analysis shows that while DD-based heuristics trail the state of the art, even small relaxed DDs are competitive with the linear programming heuristic for the DFP task, thus, revealing novel ways of designing admissible heuristics.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document