scholarly journals Manifold-adaptive dimension estimation revisited

2022 ◽  
Vol 8 ◽  
pp. e790
Author(s):  
Zsigmond Benkő ◽  
Marcell Stippinger ◽  
Roberta Rehus ◽  
Attila Bencze ◽  
Dániel Fabó ◽  
...  

Data dimensionality informs us about data complexity and sets limit on the structure of successful signal processing pipelines. In this work we revisit and improve the manifold adaptive Farahmand-Szepesvári-Audibert (FSA) dimension estimator, making it one of the best nearest neighbor-based dimension estimators available. We compute the probability density function of local FSA estimates, if the local manifold density is uniform. Based on the probability density function, we propose to use the median of local estimates as a basic global measure of intrinsic dimensionality, and we demonstrate the advantages of this asymptotically unbiased estimator over the previously proposed statistics: the mode and the mean. Additionally, from the probability density function, we derive the maximum likelihood formula for global intrinsic dimensionality, if i.i.d. holds. We tackle edge and finite-sample effects with an exponential correction formula, calibrated on hypercube datasets. We compare the performance of the corrected median-FSA estimator with kNN estimators: maximum likelihood (Levina-Bickel), the 2NN and two implementations of DANCo (R and MATLAB). We show that corrected median-FSA estimator beats the maximum likelihood estimator and it is on equal footing with DANCo for standard synthetic benchmarks according to mean percentage error and error rate metrics. With the median-FSA algorithm, we reveal diverse changes in the neural dynamics while resting state and during epileptic seizures. We identify brain areas with lower-dimensional dynamics that are possible causal sources and candidates for being seizure onset zones.

2020 ◽  
Vol 70 (5) ◽  
pp. 1211-1230
Author(s):  
Abdus Saboor ◽  
Hassan S. Bakouch ◽  
Fernando A. Moala ◽  
Sheraz Hussain

AbstractIn this paper, a bivariate extension of exponentiated Fréchet distribution is introduced, namely a bivariate exponentiated Fréchet (BvEF) distribution whose marginals are univariate exponentiated Fréchet distribution. Several properties of the proposed distribution are discussed, such as the joint survival function, joint probability density function, marginal probability density function, conditional probability density function, moments, marginal and bivariate moment generating functions. Moreover, the proposed distribution is obtained by the Marshall-Olkin survival copula. Estimation of the parameters is investigated by the maximum likelihood with the observed information matrix. In addition to the maximum likelihood estimation method, we consider the Bayesian inference and least square estimation and compare these three methodologies for the BvEF. A simulation study is carried out to compare the performance of the estimators by the presented estimation methods. The proposed bivariate distribution with other related bivariate distributions are fitted to a real-life paired data set. It is shown that, the BvEF distribution has a superior performance among the compared distributions using several tests of goodness–of–fit.


AIChE Journal ◽  
2014 ◽  
Vol 60 (3) ◽  
pp. 1013-1026 ◽  
Author(s):  
Taha Mohseni Ahooyi ◽  
Masoud Soroush ◽  
Jeffrey E. Arbogast ◽  
Warren D. Seider ◽  
Ulku G. Oktem

1988 ◽  
Vol 31 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Siegfried H. Lehnigk

We shall concern ourselves with the class of continuous, four-parameter, one-sided probability distributions which can be characterized by the probability density function (pdf) classIt depends on the four parameters: shift c ∈ R, scale b > 0, initial shape p < 1, and terminal shape β > 0. For p ≦ 0, the definition of f(x) can be completed by setting f(c) = β/bΓ(β−1)>0 if p = 0, and f(c) = 0 if p < 0. For 0 < p < 1, f(x) remains undefined at x = c; f(x)↑ + ∞ as x↓c.


Sign in / Sign up

Export Citation Format

Share Document