scholarly journals Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica)

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1834 ◽  
Author(s):  
Victoria E.M. Gerber ◽  
Sanoji Wijenayake ◽  
Kenneth B. Storey

The common wood frog,Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog.

1991 ◽  
Vol 261 (6) ◽  
pp. R1346-R1350 ◽  
Author(s):  
J. P. Costanzo ◽  
R. E. Lee

Erythrocytes from the freeze-tolerant wood frog (Rana sylvatica) were subjected to in vitro tests of freeze tolerance, cryoprotection, and osmotic fragility. The responses of cells from frogs acclimated to 4 or 15 degrees C were similar. Erythrocytes that were frozen in saline hemolyzed at -4 degrees C or lower. The addition of high concentrations (150 and 1,500 mM) of glucose or glycerol, cryoprotectants produced naturally by freeze-tolerant frogs, significantly reduced cell injury at -8 degrees C, but concentrations of 1.5 or 15 mM were ineffective. Hemolysis was reduced by 94% with 1,500 mM glycerol and by 84% with 1,500 mM glucose; thus glycerol was the more effective cryoprotectant. Mean fragility values for frog erythrocytes incubated in hypertonic and hypotonic saline were 1,938 and 49 mosM, respectively. Survival in freeze tolerance and cryoprotection experiments was comparable for erythrocytes from frogs and humans, suggesting that these cells may respond similarly to freezing-related stresses. However, the breadth of osmotic tolerance, standardized for differences in isotonicity, was greater for frog erythrocytes than for human erythrocytes. Our data suggest that erythrocytes from R. sylvatica are adequately protected by glucose under natural conditions of freezing and thawing.


Cryobiology ◽  
2017 ◽  
Vol 77 ◽  
pp. 25-33 ◽  
Author(s):  
Michael B. Smolinski ◽  
Jessica J.L. Mattice ◽  
Kenneth B. Storey

1993 ◽  
Vol 71 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Jon P. Costanzo ◽  
Richard E. Lee Jr.

Freezing survival of the wood frog (Rana sylvatica) is enhanced by the synthesis of the cryoprotectant glucose, via liver glycogenolysis. Because the quantity of glucose mobilized during freezing bears significantly on the limit of freeze tolerance, we investigated the relationship between the quantity of liver glycogen and the capacity for cryoprotectant synthesis. We successfully augmented natural levels of liver glycogen by injecting cold-conditioned wood frogs with glucose. Groups of 8 frogs having mean liver glycogen concentrations of 554 ± 57 (SE), 940 ± 57, and 1264 ± 66 μmol/g catabolized 98.7, 83.4, and 52.8%, respectively, of their glycogen reserves during 24 h of freezing to −2.5 °C. Glucose concentrations concomitantly increased, reaching 21 ± 3, 102 ± 23, and 119 ± 14 μmol/g, respectively, in the liver, and 15 ± 3, 42 ± 5, and 61 ± 5 μmol/mL, respectively, in the blood. Because the capacity for cryoprotectant synthesis depends on the amount of liver glycogen, the greatest risk of freezing injury likely occurs during spring, when glycogen reserves are minimal. Non-glucose osmolites were important in the wood frog's cryoprotectant system, especially in frogs having low glycogen levels. Presumably the natural variation in cryoprotectant synthesis capacity among individuals and populations of R. sylvatica chiefly reflects differences in glycogen reserves; however, environmental, physiological, and genetic factors likely are also involved.


2016 ◽  
Vol 186 (8) ◽  
pp. 1045-1058 ◽  
Author(s):  
M. Clara F. do Amaral ◽  
Richard E. Lee ◽  
Jon P. Costanzo

Sign in / Sign up

Export Citation Format

Share Document