scholarly journals Crystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1964 ◽  
Author(s):  
Jingjie Yang ◽  
Eoin N. Leen ◽  
Francois F. Maree ◽  
Stephen Curry

The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cproperforms most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cprofrom serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cproamino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cprofrom SAT2/GHA/8/91.

2016 ◽  
Author(s):  
Jingjie Yang ◽  
Eoin N Leen ◽  
Francois F Maree ◽  
Stephen Curry

The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the single open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A –one of the seven serotypes of FMDV – adopts a trypsin-like fold. Phylogenetically the FMDV serotypes are grouped into two clusters, with O, A, C, and Asia 1 in one, and the three South African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2Å resolution of 3Cpro from SAT2/GHA/8/91).


2016 ◽  
Author(s):  
Jingjie Yang ◽  
Eoin N Leen ◽  
Francois F Maree ◽  
Stephen Curry

The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the single open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A –one of the seven serotypes of FMDV – adopts a trypsin-like fold. Phylogenetically the FMDV serotypes are grouped into two clusters, with O, A, C, and Asia 1 in one, and the three South African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2Å resolution of 3Cpro from SAT2/GHA/8/91).


2005 ◽  
Vol 280 (12) ◽  
pp. 11520-11527 ◽  
Author(s):  
James R. Birtley ◽  
Stephen R. Knox ◽  
Agnès M. Jaulent ◽  
Peter Brick ◽  
Robin J. Leatherbarrow ◽  
...  

2010 ◽  
Vol 395 (2) ◽  
pp. 375-389 ◽  
Author(s):  
Patricia A. Zunszain ◽  
Stephen R. Knox ◽  
Trevor R. Sweeney ◽  
Jingjie Yang ◽  
Núria Roqué-Rosell ◽  
...  

2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Michael Puckette ◽  
Benjamin A. Clark ◽  
Justin D. Smith ◽  
Traci Turecek ◽  
Erica Martel ◽  
...  

ABSTRACT The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production.


2018 ◽  
Vol 6 (2) ◽  
pp. 23-26
Author(s):  
Mohammad Showkat Mahmud ◽  
Eusha Islam ◽  
Md. Giasuddin ◽  
Mohammed Abdus Samad ◽  
Md. Rezaul Karim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document