Numerical Solution of Volterra-Fredholm Integral Equations Using Hybrid Orthonormal Bernstein and Block-Pulse Functions

2017 ◽  
Vol 4 (4) ◽  
pp. 1-14 ◽  
Author(s):  
Mohamed Ramadan ◽  
Mohamed Ali
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhua Hou ◽  
Beibo Qin ◽  
Changqing Yang

A numerical method to solve nonlinear Fredholm integral equations of second kind is presented in this work. The method is based upon hybrid function approximate. The properties of hybrid of block-pulse functions and Taylor series are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of algebraic equations. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ayyubi Ahmad

A numerical method based on modified block pulse functions is proposed for solving the mixed linear Volterra-Fredholm integral equations. We obtain an integration operational matrix of modified block pulse functions on interval [0,T). A modified block pulse functions and their operational matrix of integration, the mixed linear Volterra-Fredholm integral equations can be reduced to a linear system of algebraic equations. The rate of convergence is O(h) and error analysis of the proposed method are discussed. Some examples are provided to show that the proposed method have a good degree of accuracy.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4923-4935 ◽  
Author(s):  
Vahid Mahaleh ◽  
Reza Ezzati

In this paper, first, we introduce a successive approximation method in terms of a combination of Bernstein polynomials and block-pulse functions. The proposed method is given for solving two dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Then, we present the convergence of the proposed method. Also we investigate the numerical stability of the method with respect to the choice of the first iteration. Finally, two numerical examples are presented to show the accuracy of the method.


Sign in / Sign up

Export Citation Format

Share Document