scholarly journals Numerical Solution of Nonlinear Fredholm Integrodifferential Equations of Fractional Order by Using Hybrid Functions and the Collocation Method

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Jianhua Hou ◽  
Beibo Qin ◽  
Changqing Yang

A numerical method to solve nonlinear Fredholm integral equations of second kind is presented in this work. The method is based upon hybrid function approximate. The properties of hybrid of block-pulse functions and Taylor series are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of algebraic equations. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Changqing Yang

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm-type equations, which have many applications in mathematical physics, are then considered. The method is based upon hybrid function approximate. The properties of hybrid of block-pulse functions and Chebyshev series are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 200
Author(s):  
Ji-Huan He ◽  
Mahmoud H. Taha ◽  
Mohamed A. Ramadan ◽  
Galal M. Moatimid

The present paper employs a numerical method based on the improved block–pulse basis functions (IBPFs). This was mainly performed to resolve the Volterra–Fredholm integral equations of the second kind. Those equations are often simplified into a linear system of algebraic equations through the use of IBPFs in addition to the operational matrix of integration. Typically, the classical alterations have enhanced the time taken by the computer program to solve the system of algebraic equations. The current modification works perfectly and has improved the efficiency over the regular block–pulse basis functions (BPF). Additionally, the paper handles the uniqueness plus the convergence theorems of the solution. Numerical examples have been presented to illustrate the efficiency as well as the accuracy of the method. Furthermore, tables and graphs are used to show and confirm how the method is highly efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. Mashayekhi ◽  
M. Razzaghi ◽  
O. Tripak

A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2005 ◽  
Vol 11 (12) ◽  
pp. 1455-1468 ◽  
Author(s):  
H. R. Marzban ◽  
M. Razzaghi

In this paper we present a method for finding the solution of time-delay systems using a hybrid function. We present the properties of the hybrid functions, which consist of block-pulse functions plus Taylor series. The method is based upon expanding various time functions in the system as their truncated hybrid functions. Operational matrices of integration and delay are presented and are utilized to reduce the solution of time-delay systems to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. H. Behiry

A numerical method for solving nonlinear Fredholm integrodifferential equations is proposed. The method is based on hybrid functions approximate. The properties of hybrid of block pulse functions and orthonormal Bernstein polynomials are presented and utilized to reduce the problem to the solution of nonlinear algebraic equations. Numerical examples are introduced to illustrate the effectiveness and simplicity of the present method.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ayyubi Ahmad

A numerical method based on modified block pulse functions is proposed for solving the mixed linear Volterra-Fredholm integral equations. We obtain an integration operational matrix of modified block pulse functions on interval [0,T). A modified block pulse functions and their operational matrix of integration, the mixed linear Volterra-Fredholm integral equations can be reduced to a linear system of algebraic equations. The rate of convergence is O(h) and error analysis of the proposed method are discussed. Some examples are provided to show that the proposed method have a good degree of accuracy.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4923-4935 ◽  
Author(s):  
Vahid Mahaleh ◽  
Reza Ezzati

In this paper, first, we introduce a successive approximation method in terms of a combination of Bernstein polynomials and block-pulse functions. The proposed method is given for solving two dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Then, we present the convergence of the proposed method. Also we investigate the numerical stability of the method with respect to the choice of the first iteration. Finally, two numerical examples are presented to show the accuracy of the method.


Sign in / Sign up

Export Citation Format

Share Document