The Cauchy Problem for the Camassa-Holm Equation with Quartic Nonlinearity in Besov Spaces

2016 ◽  
Vol 16 (4) ◽  
pp. 1-18
Author(s):  
Shan Zheng
2014 ◽  
Vol 256 (8) ◽  
pp. 2876-2901 ◽  
Author(s):  
Wei Yan ◽  
Yongsheng Li ◽  
Yimin Zhang

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yongsheng Mi ◽  
Chunlai Mu ◽  
Weian Tao

We study the Cauchy problem of a weakly dissipative modified two-component periodic Camassa-Holm equation. We first establish the local well-posedness result. Then we derive the precise blow-up scenario and the blow-up rate for strong solutions to the system. Finally, we present two blow-up results for strong solutions to the system.


2020 ◽  
Vol 8 ◽  
Author(s):  
JOSÉ A. CARRILLO ◽  
KATRIN GRUNERT ◽  
HELGE HOLDEN

We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is required to augment the equation itself by a measure that represents the associated energy, and the breakdown of the solution is associated with a complicated interplay where the measure becomes singular. The main result in this paper is the construction of a Lipschitz metric that compares two solutions of the CH equation with the respective initial data. The Lipschitz metric is based on the use of the Wasserstein metric.


2020 ◽  
Vol 193 (4) ◽  
pp. 857-877
Author(s):  
Zhaonan Luo ◽  
Zhijun Qiao ◽  
Zhaoyang Yin

2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Elena Cordero ◽  
Kasso A. Okoudjou

We give a sharp estimate on the norm of the scaling operatorUλf(x)=f(λx)acting on the weighted modulation spacesMs,tp,q(ℝd). In particular, we recover and extend recent results by Sugimoto and Tomita in the unweighted case. As an application of our results, we estimate the growth in time of solutions of the wave and vibrating plate equations, which is of interest when considering the well-posedness of the Cauchy problem for these equations. Finally, we provide new embedding results between modulation and Besov spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Zhaowei Sheng ◽  
Shaoyong Lai ◽  
Yuan Ma ◽  
Xuanjun Luo

The existence of global weak solutions to the Cauchy problem for a generalized Camassa-Holm equation with a dissipative term is investigated in the spaceC([0,∞)×R)∩L∞([0,∞);H1(R))provided that its initial valueu0(x)belongs to the spaceH1(R). A one-sided super bound estimate and a space-time higher-norm estimate on the first-order derivatives of the solution with respect to the space variable are derived.


Sign in / Sign up

Export Citation Format

Share Document