blow up rate
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Shuguan Ji ◽  
Yonghui Zhou

In this paper, we mainly study several problems on the weakly dissipative generalized Novikov equation. We first establish the local well-posedness of solutions. We then give the precise blow-up scenarios for the generalized Novikov equation provided the momentum density associated with their initial data changes sign, and obtain the blow-up rate of blow-up solutions. Finally, we prove that the equation has a global solution provided the momentum density associated with their initial data do not change sign.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qingxuan Wang ◽  
Binhua Feng ◽  
Yuan Li ◽  
Qihong Shi

<p style='text-indent:20px;'>We consider the semi-relativistic Hartree equation with combined Hartree-type nonlinearities given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ i\partial_t \psi = \sqrt{-\triangle+m^2}\, \psi+\beta(\frac{1}{|x|^\alpha}\ast |\psi|^2)\psi-(\frac{1}{|x|}\ast |\psi|^2)\psi\ \ \ \text{on $\mathbb{R}^3$.} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 0&lt;\alpha&lt;1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \beta&gt;0 $\end{document}</tex-math></inline-formula>. Firstly we study the existence and stability of the maximal ground state <inline-formula><tex-math id="M3">\begin{document}$ \psi_\beta $\end{document}</tex-math></inline-formula> at <inline-formula><tex-math id="M4">\begin{document}$ N = N_c $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ N_c $\end{document}</tex-math></inline-formula> is a threshold value and can be regarded as "Chandrasekhar limiting mass". Secondly, we analyse blow-up behaviours of maximal ground states <inline-formula><tex-math id="M6">\begin{document}$ \psi_\beta $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M7">\begin{document}$ \beta\rightarrow 0^+ $\end{document}</tex-math></inline-formula>, and the optimal blow-up rate with respect to <inline-formula><tex-math id="M8">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> will be calculated.</p>


2021 ◽  
Vol 4 (3) ◽  
pp. 1-24
Author(s):  
Raúl Ferreira ◽  
◽  
Arturo de Pablo ◽  

<abstract><p>We study the behaviour of the solutions to the quasilinear heat equation with a reaction restricted to a half-line</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_t = (u^m)_{xx}+a(x) u^p, $\end{document} </tex-math></disp-formula></p> <p>$ m, p &gt; 0 $ and $ a(x) = 1 $ for $ x &gt; 0 $, $ a(x) = 0 $ for $ x &lt; 0 $. We first characterize the global existence exponent $ p_0 = 1 $ and the Fujita exponent $ p_c = m+2 $. Then we pass to study the grow-up rate in the case $ p\le1 $ and the blow-up rate for $ p &gt; 1 $. In particular we show that the grow-up rate is different as for global reaction if $ p &gt; m $ or $ p = 1\neq m $.</p></abstract>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Juntang Ding ◽  
Chenyu Dong

<p style='text-indent:20px;'>The main purpose of the present paper is to study the blow-up problem of a weakly coupled quasilinear parabolic system as follows:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{ll} u_{t} = \nabla\cdot\left(r(u)\nabla u\right)+f(u,v,x,t), &amp; \\ v_{t} = \nabla\cdot\left(s(v)\nabla v\right)+g(u,v,x,t) &amp;{\rm in} \ \Omega\times(0,t^{*}), \\ \frac{\partial u}{\partial\nu} = h(u), \ \frac{\partial v}{\partial\nu} = k(v) &amp;{\rm on} \ \partial\Omega\times(0,t^{*}), \\ u(x,0) = u_{0}(x), \ v(x,0) = v_{0}(x) &amp;{\rm in} \ \overline{\Omega}. \end{array} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Here <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a spatial bounded region in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^{n} \ (n\geq2) $\end{document}</tex-math></inline-formula> and the boundary <inline-formula><tex-math id="M3">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula> of the spatial region <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is smooth. We give a sufficient condition to guarantee that the positive solution <inline-formula><tex-math id="M5">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> of the above problem must be a blow-up solution with a finite blow-up time <inline-formula><tex-math id="M6">\begin{document}$ t^* $\end{document}</tex-math></inline-formula>. In addition, an upper bound on <inline-formula><tex-math id="M7">\begin{document}$ t^* $\end{document}</tex-math></inline-formula> and an upper estimate of the blow-up rate on <inline-formula><tex-math id="M8">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> are obtained.</p>


2021 ◽  
Vol 6 (11) ◽  
pp. 11749-11777
Author(s):  
Chien-Hong Cho ◽  
◽  
Ying-Jung Lu ◽  

<abstract><p>We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.</p></abstract>


Author(s):  
QF Long

We in this paper improve a method of establishing the existence of finite time blow-up solutions, and then apply it to study the finite time blow-up, the blow-up time and the blow-up rate of the weak solutions on the initial boundary problem of u_t - \Delta u_{t} - \Delta u_{t} = |u|^{p - 1}u. By applying this improved method, we prove that I(u_{0}) < 0 is a sufficient condition of the existence of the finite time blow-up solutions and \frac{2(p - 1)^{-1}\|u_{0}\|_{H_{0}^{1}}^{2}}{(p - 1) \|\nabla u_{0}\|_{2}^{2} - 2(p + 1)J(u_{0})} is an upper bound for the blow-up time, which generalize the blow-up results of the predecessors in the sense of the variation. Moreover, we estimate the upper blow-up rate of the blow-up solutions, too.


Author(s):  
Beomjun Choi ◽  
Panagiota Daskalopoulos ◽  
John King

AbstractThis work concerns with the existence and detailed asymptotic analysis of type II singularities for solutions to complete non-compact conformally flat Yamabe flow with cylindrical behavior at infinity. We provide the specific blow-up rate of the maximum curvature and show that the solution converges, after blowing-up around the curvature maximum points, to a rotationally symmetric steady soliton. It is the first time that the steady soliton is shown to be a finite time singularity model of the Yamabe flow.


2020 ◽  
Vol 13 (3) ◽  
pp. 645-662
Author(s):  
Huafei Di ◽  
Lin Chen ◽  
Zefang Song

This paper deals with the blow-up phenomena for a type of nonlinear porous medium equations with weighted source ut −4um = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions. Based on the auxiliary functions and differential-integral inequalities, the blow-up criterions which ensure that u cannot exist all time are given under two different assumptions, and the corresponding estimates on the upper bounds for blow-up time and blow-up rate are derived respectively. Moreover, we use three different methods to determine the lower bounds for blow-up time and blow-up rate estimates if blow-up does occurs.


2020 ◽  
pp. 200-203
Author(s):  
Maan A. Rasheed

In this paper, the blow-up solutions for a parabolic problem, defined in a bounded domain, are studied. Namely, we consider the upper blow-up rate estimate for heat equation with a nonlinear Neumann boundary condition defined on a ball in Rn.


Sign in / Sign up

Export Citation Format

Share Document