Geological Interpretation of the High Resolution Aeromagnetic Data over Okigwe-Udi Area, Anambra Basin, Nigeria, Using 3-D Euler Deconvolution and 2-D Spectral Inversion Methods

Author(s):  
R Onyewuchi ◽  
S Ugwu
2021 ◽  
Author(s):  
Tianhua Zhang ◽  
Shiduo Yang ◽  
Chandramani Shrivastava ◽  
Adrian A ◽  
Nadege Bize-Forest

Abstract With the advancement of LWD (Logging While Drilling) hardware and acquisition, the imaging technology becomes not only an indispensable part of the drilling tool string, but also the image resolution increases to map layers and heterogeneity features down to less than 5mm scale. This shortens the geological interpretation turn-around time from wireline logging time (hours to days after drilling) to semi-real time (drilling time or hours after drilling). At the same time, drilling motion is complex. The depth tracking is on the surface referenced to the surface block movement. The imaging sensor located downhole can be thousands of feet away from the surface. Mechanical torque and drag, wellbore friction, wellbore temperature and weight on bit can make the downhole sensor movement motion not synchronized with surface pipe depth. This will cause time- depth conversion step generate image artifacts that either stop real-time interpretation of geological features or mis-interpret features on high resolution images. In this paper, we present several LWD images featuring distortion mechanism during the drilling process using synthetic data. We investigated how heave, depth reset and downhole sensor stick/slip caused image distortions. We provide solutions based on downhole sensor pseudo velocity computation to minimize the image distortion. The best practice in using Savitsky-Golay filter are presented in the discussion sections. Finally, some high-resolution LWD images distorted with drilling-related artifacts and processed ones are shown to demonstrate the importance of image post-processing. With the proper processed images, we can minimize interpretation risks and make drilling decisions with more confidence.


2021 ◽  
Vol 25 (4) ◽  
pp. 585-590
Author(s):  
H. Musa ◽  
N.E. Bassey ◽  
R. Bello

The study of high-resolution aeromagnetic data was carried out over the Gongola basin, upper Benue trough, northeastern Nigeria, for analytic signal depth determination. Total intensity magnetic map obtained from the data using the Oasis Montaj TM programming software was used to get the residual map by polynomial fitting, from where the analytic signal was obtained with the use of anomaly width at half the amplitude (X1/2). This was used to carry out depth estimations over the study area. The results showed that it peaks over the magnetic structure with local maxima over its edges (boundaries or contact), and the amplitude is simply related to magnetization, likewise results also showed that the depth estimates were in the range of 1.2 to 5.9 km and were calculated for contact, dyke/sill and horizontal cylinder respectively. The lowest values are from DD profiles, while the highs are from AA profiles. This work is important in identifying dykes, contacts and intrusives over an area.


2017 ◽  
Vol 08 (07) ◽  
pp. 925-947 ◽  
Author(s):  
Justine Yandjimain ◽  
Théophile Ndougsa-Mbarga ◽  
Arsène Meying ◽  
Marcelin Bikoro Bi-Alou ◽  
Paul Claude Ngoumou ◽  
...  

2021 ◽  
pp. 1-57
Author(s):  
Olatunbosun O. Olagundoye ◽  
Chiedu S. Okereke ◽  
Aniekan E. Edet ◽  
Dominic Obi ◽  
Aniediobong Ukpong

Data transformation, regional-residual separation, trend analysis, and Analytic Signal (AS) depth estimation were applied to aeromagnetic data covering the Anambra Basin, which is a major depocentre in the Benue Trough, southeast Nigeria with the primary objectives of accentuating attributes of magnetic sources and determining if sufficient sediment thickness exists for hydrocarbon generation, maturation, and expulsion. The application of data transformation techniques (such as map projection, merging, and reduction-to-pole) and regional-residual ensured the computation of a crustal magnetic field that would be suitable for magnetic analyses. Results indicate that the magnetic basement in the basin forms an undulating surface overlain by sediments with average thickness ranging between 4 km and 7.5 km, while maximum thickness reaches 8 km in some areas. This depth range suggests promising prospect for source-facies maturation and expulsion. We expect that areas in the study area with these appreciable sediment thicknesses, good preservation of graben-fill, and suitable areal closures or fault structures would be favorable for hydrocarbon prospectivity.


Sign in / Sign up

Export Citation Format

Share Document