Fuzzy Model, Neural Network and Empirical Model for the Estimation of Global Solar Radiation for Port-Harcourt, Nigeria

2017 ◽  
Vol 17 (1) ◽  
pp. 1-8
Author(s):  
Olumide Akinnawo ◽  
Oluwaseun Adebayo ◽  
Abel Usifo ◽  
Abiodun Ogundele
2017 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Nwokolo Samuel Chukwujindu ◽  
Ogbulezie Julie C. ◽  
John-Jaja Sylvia Alwell

In this study, relationship between photosynthetically active radiation (PAR) and global solar radiation (H) over selected climatic zones in Nigeria using 22-years data (July 1983 – June 2005) was analysed. Empirical model was employed as the baseline for theoretical formulation and estimation of the ratio of PAR/H over climatic zones in Nigeria. From the estimated values, the seasonal PAR/H ranged from 1.946-2.005, 1.909-1.955, 1.968-2.039, 1.987-2.060, 1.961-2.041, 1.928-1.984 and 1.946-2.005 in rainy season, and the high values were due to low influence from clearness index, harmattan dust and pyrogenic aerosols from regional biomass burning compared with 1.906-1.923, 1.905-1.917, 1.927-1.952, 1.950-1.999, 1.971-1.985 and 1.889-1.923 recorded in dry season as a result of combined high influence from cloudiness, pyogenic aerosols and harmattan dust with annual mean values of 1.943, 1.921, 1.975, 2.007, 1.986 and 1.936 for Ilorin, Sokoto, Abeokuta, Port Harcourt, Enugu and Gusau respectively. The annual ratio of PAR/H revealed that there is an evidence increase of the values from North-East (Gusau) to South-South (Port Harcourt). These variations were mainly due to trends in cloudiness and associated atmospheric moisture with the movement of the Hadley cell circulation system along the equatorial line. From the analysed results, the model was found suitable and meteorologically reliable to estimate PAR/H accurately from commonly available H data when compared with results within and beyond tropical locations in Nigeria.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 25-33
Author(s):  
Krishna R Adhikari ◽  
Shekhar Gurung ◽  
Binod K Bhattarai

Solar radiation is the best option and cost effective energy resources of this globe. Only a few stations are there in developing and under developed countries including Nepal to monitor solar radiation and sunshine hours to generate a rational and accurate solar energy database. In this study, daily global solar radiation, and ubiquitous meteorological data (temperature and relative humidity) rather than rarely available sunshine hours have been used for Biratnagar, Kathmandu, Pokhara and Jumla to derive regression constants and hence to develop an empirical model. The model estimated global solar radiation is found to be in close agreement with measured values of respective sites. The estimated values were compared with Angstrom-Prescott model and examined using the statistical tools. Thus, the linear regression technique can be used to develop model at any location in the world. The resultant model may then be used to estimate the missing data of solar radiation for the respective sites and also can be used to estimate global solar radiation for the locations of similar geographic and meteorological characteristic. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10376   BIBECHANA 11(1) (2014) 25-33


Sign in / Sign up

Export Citation Format

Share Document