scholarly journals The Development of Extradosed Bridge Concept from a Vision to a Reality

2021 ◽  
Vol 23 (1) ◽  
pp. 62-66
Author(s):  
Teddy S. Theryo

The development of Extradosed bridge from a vision to a real project is presented in this paper. Mathivat of France who is recognized as the inventor of this bridge type, envisioned a new bridge type suitable for medium span ranges in 1979.  He suggested that some of the cantilever tendons in balanced cantilever bridge can be deviated to the top deck supported by short tower resemble stay cables. The structural benefit of this idea is increasing positive moment capacity by increasing eccentricity over the pier and enhanced shear capacity.  Therefore, with the same conditions, longer span can be designed. Due to small angle of stay cables, the cable allowable stress at serviceability is about the same level with balanced cantilever bridge and no significant penalty on fatigue resistance unlike stay cables for conventional cable stayed bridges. The Extradosed bridge offers economic benefit for medium span range and aesthetically pleasing.

2012 ◽  
Vol 568 ◽  
pp. 200-203
Author(s):  
Xiang Nan Wu ◽  
Xiao Liang Zhai ◽  
Ming Min Zhou

There exist evident shear-lag phenomena in large-span composite cable-stayed bridges under the action of axial force, especially in the deck with double main girders. In order to discuss the distribution law of the effective flange width coefficient along the span, caused by axial force, finite element computations of five composite cable-stayed bridges and theoretical analysis have been performed. The transmission angle of axial force caused by the axial compression of stay cables was given, meanwhile the formulas for computation effective slab width coefficient under axial force were suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Seunghoo Jeong ◽  
Young-Joo Lee ◽  
Sung-Han Sim

As the construction of long-span bridges such as cable-stayed bridges increases worldwide, maintaining bridge serviceability and operability has become an important issue in civil engineering. The stay cable is a principal component of cable-stayed bridges and is generally lightly damped and intrinsically vulnerable to vibration. Excessive vibrations in stay cables can potentially cause long-term fatigue accumulation and serviceability issues. Previous studies have mainly focused on the mitigation of cable vibration within an acceptable operational level, while little attention has been paid to the quantitative assessment of serviceability enhancement provided by vibration control. This study accordingly proposed and evaluated a serviceability assessment method for stay cables equipped with vibration control. Cable serviceability failure was defined according to the range of acceptable cable responses provided in most bridge design codes. The cable serviceability failure probability was then determined by means of the first-passage problem using VanMarcke’s approximation. The proposed approach effectively allows the probability of serviceability failure to be calculated depending on the properties of any installed vibration control method. To demonstrate the proposed method, the stay cables of the Second Jindo Bridge in South Korea were evaluated and the analysis results accurately reflected cable behavior during a known wind event and show that the appropriate selection of vibration control method and properties can effectively reduce the probability of serviceability failure.


2008 ◽  
Vol 35 (9) ◽  
pp. 951-962 ◽  
Author(s):  
A. M. Ruiz-Teran ◽  
A. C. Aparicio

This paper deals with the application of under-deck cable-staying systems and combined cable-staying systems to prestressed concrete road bridges with multiple spans of medium length. Schemes using under-deck cable-staying systems are not suitable for continuous bridges, as they are not efficient under traffic live load and only allow for the compensation of permanent load. However, combined cable-staying systems are very efficient for continuous bridges and enable the design of very slender decks (1/100th of span) where the amount of materials used is halved in comparison with conventional schemes without stay cables. In this paper, the substantial advantages provided by combined cable-staying systems for continuous bridges (such as high structural efficiency, varied construction possibilities, both economic and aesthetical benefits, and landscape integration) are set out. Finally, design criteria are included.


1992 ◽  
Vol 118 (3) ◽  
pp. 701-715 ◽  
Author(s):  
Koei Takena ◽  
Chitoshi Miki ◽  
Hirosuke Shimokawa ◽  
Kenji Sakamoto

Sign in / Sign up

Export Citation Format

Share Document